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Executive Summary 
This document presents the outcomes of Task T5.1 within Work Package 5 (WP5) of the 

EVENTS project, focusing on integrating automated driving components into virtual 

environments. The task addressed diverse scenarios, including urban navigation, highway 

manoeuvres, vulnerable road user (VRU) interactions, and adverse weather conditions. High-

fidelity simulation technologies—open-source, commercial, and tailored solutions—were 

leveraged to replicate real-world complexities and test developments from WP3 (Perception 

and V2X Communication) and WP4 (Decision-Making and Control). Progressive integration 

enabled iterative testing loops, ensuring continuous evaluation and refinement of perception 

systems, control strategies, and decision-making algorithms. Special attention was given to 

challenges like multi-agent coordination, VRU safety, and dynamic obstacle avoidance 

through technologies such as model predictive control, machine learning-based prediction, 

and sensor integration. The virtual environments established in T5.1 provide a scalable, safe, 

and cost-effective testing foundation, supporting hybrid testing and real-world deployment in 

the next phases of WP5 and advancing autonomous driving system capabilities.  
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 Introduction 
This document follows the structure of all the other deliverables, namely, an 

introduction with the aims of project and scope of the document; after that, the 

main text, with the specific topic of the document. 

1.1 Project aim 

Driving is a challenging task. In our everyday life as drivers, we are facing unexpected 

situations we need to handle in a safe and efficient way. The same is valid for 

Connected and Automated Vehicles (CAVs), which also need to handle these 

situations, to a certain extent, depending on their automation level. The higher the 

automation level is, the higher the expectations for the system to cope with these 

situations are. 

In the context of this project, these unexpected situations, where the normal 

operation of the CAV is close to be disrupted (e.g., ODD limit is reached due to traffic 

changes, harsh weather/light conditions, imperfect data, sensor/communication 

failures, etc.), are called “events”. EVENTS is also the acronym of this project.  

Today, CAVs are facing several challenges (e.g., perception in complex urban 

environments, Vulnerable Road Users (VRUs) detection, perception in adverse 

weather and low visibility conditions) that should be overcome to be able to drive 

through these events in a safe and reliable way. 

Within our scope and to cover a wide area of scenarios, these kinds of events are 

clustered under three main use cases: a) Interaction with VRUs, b) Non-Standard and 

Unstructured Road Conditions and c) Low Visibility and Adverse Weather Conditions. 

Our vision in EVENTS is to create a robust and self-resilient perception and decision-

making system for AVs to manage different kind of “events” on the horizon. These 

events result in reaching the CAV ODD limitations due to the dynamic changing road 

environment (VRUs, obstacles) and/or due to imperfect data (e.g., sensor and 

communication failures). The CAV should continue and operate safely no matter what. 

When the system cannot handle the situation, an improved minimum risk manoeuvre 

should be put in place. 

1.2 Report scope  

This report focuses on the outcomes of Task T5.1 SW integration in simulation 

environments, within the EVENTS project. Task T5.1 addresses the integration of 

perception, decision-making, and control components developed in previous work 

packages, into virtual environments to evaluate their performance under diverse and 

challenging scenarios. These scenarios include interactions with Vulnerable Road 
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Users (VRUs), non-standard and unstructured road conditions, and adverse weather 

or low-visibility conditions. 

The work presented in this document highlights the progressive integration of 

developments from WP3 (Perception and V2X Communication) and WP4 (Decision-

Making and Control) for each of the experiments in the project [1] . The virtual 

environments used encompass open-source, commercial, and tailored solutions, 

which provide controlled and scalable testing grounds for automated driving systems. 

The report also identifies the key challenges addressed during the integration process 

and the role of virtual environments in preparing for subsequent hybrid and real-world 

testing phases. 

This document excludes detailed analysis of hybrid environments and real-world 

testing tasks, as these are covered under separate future deliverable D5.2 System 

integration in the prototype vehicles. Additionally, experiments focused solely on 

hybrid or real-world scenarios, such as EXP4 and EXP5, are not included within the 

scope of this report. 

1.3 Structure of the report 

The document is structured as follows: 

• Section 1: Introduction provides an overview of the project aims, the scope of 

this report, and its structure. 

• Section 2: Overall Integration Process summarizes the systematic approach 

taken to integrate automated driving components into virtual environments. 

This section also introduces the simulation technologies used and their 

relevance to the experiments. 

• Section 3: Integration in Simulation Environments presents the detailed 

integration process for each experiment in scope (EXP1, EXP2, EXP3, EXP6, 

EXP7, and EXP8). Each subsection describes the design considerations, step-

by-step integration processes, challenges encountered, and key outcomes. 

• Section 4: Conclusions summarizes the achievements of Task T5.1, 

emphasizing the role of virtual environments in supporting the development 

and evaluation of automated driving systems. 
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 Overall integration Process 
The overall integration process describes the systematic approach adopted for 

integrating automated driving components into virtual environments across all 

experiments involved in the project. The objective was to ensure consistency, 

modularity, and scalability, enabling a robust framework for testing advanced 

perception, control, and decision-making systems. By leveraging established 

simulation platforms such as CARLA and IPG CarMaker, alongside tailored in-house 

solutions like those used by Ulm University in EXP3 and APTIV in EXP6, virtual 

environments were developed to meet each experiment’s specific objectives. This 

integration work provides a critical foundation for subsequent real-world 

deployments and hybrid testing to be reported in D5.2 System integration in the 

prototype vehicles. 

The integration process encompassed the following key aspects: 

1. Virtual Simulation Frameworks: High-fidelity simulation platforms were 

utilized to model diverse and challenging driving scenarios. Tools such as 

CARLA, IPG CarMaker, and Autoware enabled the replication of urban 

navigation, highway maneuvers, and adverse weather conditions. Scenario-

specific solutions, like Ulm University’s internal simulation setup for EXP3, 

allowed for focused and flexible integration tailored to the experiment needs. 

2. Scalability and Containerization: Modular architectures based on Docker were 

implemented in experiments such as EXP2 and EXP7. These setups provided 

scalability for running multi-agent and multi-sensor systems in parallel while 

supporting hybrid virtual-physical environments. By isolating components 

such as V2X modules, tracking systems, and motion planners into separate 

containers, experiments ensured efficient deployment, parallel execution, and 

streamlined troubleshooting. 

3. Integration of Machine Learning and Optimization : Machine learning 

components and optimization tools from WP3 and WP4 were integrated to 

enable advanced perception and decision-making functionalities. For example, 

ML-based predictive models were incorporated in EXP7 for highway joint 

prediction and planning tasks using PyTorch, while real-time optimization of 

controllers was achieved in EXP8 using ForcesPro for nonlinear MPC. These 

integrations supported the development of efficient and reliable control 

strategies in simulated environments. 

4. Performance Monitoring and Health Checks: Automated performance 

monitoring and health checks were implemented in experiments such as EXP2 

to manage the execution of complex multi-agent systems. Metrics such as task 

duration, collision events, and computation times were logged to assess the 

system’s behavior within the virtual environments. Tools like ROS2 and 
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Scenario Runner provided interfaces for automating and monitoring 

simulation performance. 

5. Real-World Compatibility Focus: Experiments were designed with an 

emphasis on integration into virtual environments while maintaining outputs 

compatible with real-world systems. For instance, real sensor models (LiDAR, 

radar, cameras) and standardized message formats such as collective 

perception messages (CPMs) were integrated into simulations. Platforms like 

the CARLA-ROS bridge ensured seamless data exchange between virtual 

agents and real-world components, facilitating hybrid testing planned in T5.2. 

The integration work achieved in this task (T5.1) ensures that components developed 

in WP3 (Perception and V2X Communication) and WP4 (Decision-Making and Control) 

were successfully implemented in virtual environments. By adopting standardized 

simulation frameworks, scalable architectures, and modularized designs, the project 

delivered robust experimental setups across multiple use cases. These virtual 

environments are a crucial step towards enabling comprehensive hybrid and real-

world testing in subsequent project tasks. 

2.1 Simulation Environments 

The simulation environments used in the EVENTS project played a key role in ensuring 

consistent and reliable integration of automated driving components. Each 

environment was carefully selected or tailored to match the requirements of specific 

experiments, tooling varied for each experiments, ranging from full on frameworks for 

automated driving like Autoware, to automated driving simulators, such as CARLA.  

1. Autoware [2]: Used in EXP1, Autoware provides a modular open-source 

software stack based on the ROS2 environment. It allows a seamless 

integration of motion planning and perception components in urban driving 

environments. 

2. CARLA [3]: Used in EXP2, provided a highly configurable and realistic 

simulation platform for testing urban navigation, and perception systems. Its 

ability to generate dynamic traffic scenarios and integrate with ROS2 made it 

ideal for multi-agent and V2X applications. 

3. IPG CarMaker [4]: used in EXP8, due to its high-fidelity vehicle dynamics 

environment which made it suitable for the research work performed on 

nonlinear control tasks like collision avoidance on slippery roads. The 

combination of advanced tire models and real-time simulation made it the 

simulator chosen for testing vehicle control strategies under adverse 

conditions. 

4. Nuplan simulator [5]: To be used in EXP7, for conducting closed loop (re-active 

agents) simulations in urban and highway driving scenarios with ML-powered 



D5.1: System integration in the virtual testing setup 

©EVENTS Consortium 2022-2025                                                                                                           Page 13 of 64 

 

ego and non-ego driving models with predictive and planning 

capabilitites.Note: This is a new tool to be adopted by ICCS team for 

ongoing/future work that was taken over in the context of WP4 based on the 

second project amendement (approval is pending at the time of writing). 

5. dSPACE ASM [6]: Used in EXP6, because it provides the environment 

simulation model, which includes the streets, weather conditions and vehicle 

dynamics of the host vehicle. Furthermore it provides the OSI groundtruth data 

which is used as input for the APTIV RADAR Sensor Model. 

6. In-House Solutions [7]: Ulm University deployed a tailored simulation 

environment for EXP3 to integrate modules such as self-assessment systems 

and V2X. 

The Table 1 below summarizes the key components and tools integrated within each 

experiment: 

Experiment Perception Control Decision-

Making 

Virtual 

Environment 

Tools 

EXP1 VRU detection Topology-

Driven MPC 
(T-MPC++) 

Urban 

Navigation 
Planning 

Autoware [2], 

ROS2 [8] 

EXP2 V2X Perception 
(CPMs) and self-

asssesment 

Platooning 
Control 

Coordinated 
Roundabout 

Navigation 

CARLA [3], 
ROS2 [8], 

Autoware [2] 
EXP3 Self-

Assessment, 
V2X Fusion 

- Behavioral 

Decision-
Making 

In-house 

simulator [7] 

EXP6 Radar Sensor 

Models for small 
objects 

- - dSPACE ASM [6] 

EXP7 ML-Based 
Prediction 

Joint 
Prediction 

and Planning 

Highway 
Behavioral 

Planning 

nuPlan 
Simulator [5] 

EXP8 Obstacle 

detection on 
adverse 

weather 

Nonlinear 

MPC, Delft 
Tyre model 

Collision 

Avoidance in 
adverse 

weather 

IPG CarMaker 

[4] 

Table 1 Key components and tools per experiment 

2.2 Key Differences and Suitability for Automated Driving  

The selection of virtual environments in the EVENTS project addressed a variety of 

automated driving scenarios, including urban navigation, highway maneuvers, and 

adverse weather conditions. Each platform offered unique advantages aligned with 
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the specific needs of the experiments, ensuring the successful integration of 

perception, control, and decision-making components. 

CARLA was used for its flexibility and configurability in urban driving environments. Its 

support for sensor models such as LiDAR and cameras, combined with integration with 

ROS2, alongside the benefits of being open-source with an active community, made it 

ideal for integrating perception developments. In EXP2, CARLA enabled the simulation 

of coordinated platooning in a roundabout, supporting V2X-based communication and 

vehicle control. Other virtual environments were also leveraged, specifically “at-

home” developments such as Ulm University’s simulation platform in EXP3. This 

environment was used to integrate self-assessment modules and V2X-based collective 

perception systems, focusing on improving perception reliability. Similarly, APTIV’s 

radar-centric virtual environment in EXP6 allowed precise radar perception testing 

with targeted capabilities for radar-focused applications. 

The commercial tool IPG CarMaker was used in EXP8 for its high-fidelity vehicle 

dynamics modeling, particularly for scenarios requiring precise simulation of nonlinear 

tire-road interactions. The platform’s advanced tire models and ability to represent 

real-world vehicle dynamics made it suitable for testing control strategies under 

adverse conditions, such as reduced road friction. This, alongside integration with the 

ForcesPro solver, allowed real-time optimization of nonlinear MPC algorithms, 

enabling accurate simulations of evasive maneuvers on slippery roads caused by 

heavy rainfall. 

Autoware, an open-source framework for automated driving, was also leveraged. 

Employed in EXP1, it served as a modular simulation platform specifically for urban 

navigation and motion planning. It provided a complete software stack integrating 

perception, decision-making, and control components. Its modular design allowed for 

the exchange of project-specific developments while maintaining a consistent base 

architecture. Autoware’s compatibility with HD maps and simplified vehicle dynamics 

models made it suitable for replicating real-world urban environments, ensuring 

consistency in testing motion planners and perception pipelines. 

The combination of platforms such as CARLA, IPG CarMaker, and Autoware, along with 

tailored virtual environments and benchmarks like nuPlan, ensured comprehensive 

coverage of the project’s technical requirements. This integration provided a robust 

foundation for testing automated driving components in virtual environments, 

supporting the transition to hybrid and real-world testing in subsequent project tasks.  
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2.3 List of Experiment Videos 

The following table summarizes the video links for all experiments conducted in T5.1, 

showcasing the integration of automated driving components in virtual environments.  

While it is not necessary, not we as a consortium are obliged per the Grant Agreement, 

to provide demonstration videos of the software integration in the simulations 

environments, we have deemed it both useful and illustrative to provide such videos 

on certain experiments. It was not though feasible to provide a video for each of the 

experiments, either due to technical or proprietary reasons. The latter reason is even 

more valid since this deliverable is a public document. 

Experiment Description Video Link 

EXP1 Interaction with VRUs in complex 

urban environment 
EXP1 Video 

EXP2 Re-establish platoon formation 

after splitting due to roundabout 
platooning in a roundabout 

EXP2 Video  

EXP3 Self-assessment and reliability of 
perception data with 
complementary V2X data in 

complex urban environments 

EXP3 Video 

EXP8 Driving minor road under adverse 

weather conditions including 
perception self-assessment 

EXP8 Video 

Table 2 List of videos per experiment 

  

https://doi.org/10.5281/zenodo.14535354
https://doi.org/10.5281/zenodo.14535412
https://doi.org/10.5281/zenodo.14535447
https://doi.org/10.5281/zenodo.14535460
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 Integration in simulation environments  
This section describes the integration of automated driving components into virtual 

environments for each experiment conducted in Task T5.1. The experiments address 

diverse scenarios, including urban navigation, highway maneuvers, vulnerable road 

user (VRU) interactions, and control strategies under adverse weather conditions. 

Each experiment leverages specific virtual environments, either open-source, 

commercial, or tailored, to test and refine the developments from WP3 and WP4 in a 

controlled, repeatable manner. 

It is important to note that EXP4 and EXP5 are planned for hybrid environments and 

rely on real-world data, which falls outside the scope of the virtual environment 

integration focus of Task T5.1. Thus, this chapter focusses on the remaining 

experiments. 

3.1 Experiment 1 

The motion planner developed in this experiment is designed to navigate urban 

environments while accounting for the presence of Vulnerable Road Users (VRUs). The 

following section outlines the virtual test environment used to evaluate the 

performance of the planner against several baseline approaches in scenarios involving 

pedestrian interactions. 

3.1.1 Architecture and Design Considerations 

The key requirement for the simulation of EXP1 is to minimize the gap from simulation 

to reality and to assess the motion planner with decision-making in real-time. The 

developed approach is integrated with Autoware software [9]. The Autoware software 

provides a baseline planner and can incorporate the real-world environment, for this 

reason, the Autoware Planning Simulation  has been used. We adapted this simulation 

environment to match as closely as possible the real-world experimental settings, 

using our own HD map collected on the real test track and adapted vehicle parameters 

to match those of the used test vehicle. 

With the developed approach integrated in Autoware, our software is compatible with 

the existing sensing, perception and control pipelines available in Autoware. 

The simulation environment is defined as an urban environment consisting of a two-

lane road without clear lanes, and where pedestrians are frequently crossing. In this 

setting, the developed motion planner with decision-making needs to drive safely but 

assertively to progress along the road as a human would do when driving in such an 

environment. 
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3.1.2 Step-by-Step Integration Process 

As mentioned previously, our simulation environment builds on top of the Autoware 

Planning Simulation. We first adapted the simulation to our real-world environment 

as follows: 

• Vehicle: The vehicle model parameters are configured to match the TUD test 

platform based on the Toyota Prius. The dynamics are simplified but already model 

delays and dynamic limits on velocity, acceleration, etc. 

• Map: The HD map of our real-world test location is loaded into the simulation. This 

provides LaneLet [2] annotations describing the road centreline and boundaries. 

By using this map, our simulation environment closely matches the real-world 

environment. 

• Objects: Autoware provides functionality to spawn dummy pedestrians, including 

a point cloud and camera images that can be detected by the perception pipeline. 

Spawning functionality is limited, however, for automated testing. 

Beyond configuring the basic Autoware simulation environment with our scenario, we 

further improved the environment with more realistic pedestrian behaviour: 

• Timing: We implemented a GPS triggered gate that starts pedestrian motion when 

the vehicle drives through. This enables us to start virtual pedestrians with the 

same timing in the simulation as in the real-world. 

• Pedestrians: Our pedestrian simulation was enhanced with several features.  

o Output: Pedestrians are simulated in a separate simulator. The output of 

the simulator is converted to Autoware dummies to simulate point clouds 

and the interaction of the perception stack with the planner. 

o Model: Pedestrians use the social forces model [10]. This model has 

interaction, causing pedestrians to evade each other when they are close 

together, resulting in more realistic pedestrian motion. 

o Uncertainty: We simulate a Gaussian noise distribution on top of the social 

forces model to simulate the uncertainty associated with the uncertain, 

non-deterministic motion of pedestrians. 

o Randomized Scenarios: We spawn pedestrians in a random area 

annotated on top of the HD map. Pedestrian spawn and goal locations are 

different for each scenario but consistent between the different planning 

methods. 
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• Automated Testing: The simulation environment is extended for automated 

testing. First, the vehicle is spawned in a start location on the HD map. Second, a 

goal position is passed along the road and the motion planner with decision-

making is activated. When the goal is reached, data relating to the experiment is 

saved, and the vehicle is respawned at the start location. Simulations are repeated 

up to a configured number. 

• Analysis: Each simulation generates a file with metrics, including:  

o Task duration, s 

o Collisions (if any), [-] 

o Timeouts (when the vehicle did not reach the goal), [-] 

o Average velocity [m/s] 

o Minimum distance to pedestrians, m 

o Computation time, s 

o Positions of the vehicle and objects, m 

Replacing and adapting the Autoware component 

Since our proposed motion planner with decision-making replaces the Autoware 

planning component, we adapted the sensor and actuator ROS2 topics to receive and 

send data to the software stack. On the output side, the Autoware control component 

expects a trajectory with a history to ensure the smoothness of the vehicle’s 

behaviour. The code for maintaining the history was adapted from the Autoware 

planning stack leading to smooth planning in simulation. 

A major adaptation was made to convert the route planned by Autoware to the format 

of the developed motion planner with decision-making. The route consists of a 

sequence of lanelets including their boundaries. Specialized software was developed 

to model the road centreline and its boundaries as continuous cubic splines that can 

be handled by the Model Predictive Controller (MPC) described in D4.2 [11]in detail. 

3.1.3 Key Challenges and Solutions 

The following describes the virtual tests of our developed motion planner with 

decision-making compared to existing baselines. 

Baselines 

We used two primary baselines. The first baseline is the Autoware standard planner, 

tuned and configured to enable dynamic collision avoidance. This stack relies on 

several components: 

• First, the dynamic collision avoidance component in the behavioural planner 

[12] implements rule-based dynamic collision avoidance. It projects laterally 

the motion plan away from a collision point, steering to avoid a collision. This 
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planner has a known limitation that it can only steer a limited amount to avoid 

pedestrians and is not incorporated by default in the Autoware software stack. 

• If the avoidance planner cannot evade pedestrians, a braking component takes 

over control. This module simply waits for the pedestrians to pass before 

continuing to drive. The two behavioural planner components can conflict and 

lead to collisions. 

• The plan of the behavioural layer, which may or may not be avoiding collisions, 

is passed to a motion planning component that refines the plan. In particular, 

it uses a convex MPC with collision avoidance constraints to satisfy the vehicle 

dynamic constraints. 

The Autoware planner is known to be conservative and is not designed to deal with 

multiple dynamic obstacles but is available open source. 

The second baseline is Local Model Predictive Contouring Control (LMPCC) [13]. 

LMPCC uses MPC to optimize a single trajectory. It was introduced to navigate around 

static and dynamic obstacles. The objectives and constraints are equal to those of our 

proposed planner. 

Simulation results 

We compare these two baselines against two variants of our proposed algorithm 

Topology-Driven MPC (T-MPC++): 

• T-MPC++, optimizes multiple distinct trajectories in parallel. 

• Fallback-enhanced T-MPC++, also optimizes trajectories that do not pass 

obstacles to have a safe fallback option available. 

All MPC-based planners use the same cost and safety constraints. T-MPC++ adds 

constraints to maintain the passing behaviour of trajectories locally.  

The simulated environment considers scenarios with 0, 2 and 4 pedestrians to 

compare how safe and efficient the planners are when evading dynamic objects. 

Simulations were run on a laptop with an Intel i9 CPU @ 2.4 GHz 16-core CPU. The 

snapshots of the baselines and the proposed approach in the simulation are shown in 

Figure 1, Figure 2 and Figure 3. Figure 1 is related to Autoware planner using the 

dynamic collision avoidance and obstacle stop planner. The plan shown with green 

(fast) – blue (slow) colours plans to steer and brake to pass the obstacles. Figure 2 

demonstrates the simulation results for Local Model Predictive Control optimizing a 

single trajectory. In this case, the planned trajectory got stuck in poor behaviour, 

failing to pass the obstacles efficiently. Figure 3 shows the results for Topology-Driven 

MPC  with fallback strategy optimizes several trajectories in distinct passing behaviors 
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(visualized with light green, dark blue and red lines). Even in crowded environments, 

the planner finds high-quality trajectories. 

 

Figure 1 Simulation results for Autoware planner. 

 

Figure 2 Simulation results for Local Model Predictive Control. 
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Figure 3 Simulation results for Topology-Driven MPC  with fallback strategy 

Pedestrians Method Duration[s] Collisions Timeouts Avg. Velocity 

[m/s] 

0 Autoware 19.5 (0.1) 0 0 1.87 

T-MPC++ 19.4 (0.3) 0 0 1.86 

2 Autoware 26.0 (6.0) 4 0 1.45 

LMPCC 20.9 (1.4) 1 0 1.75 

T-MPC++ (w/o fallback) 21.0 (1.1) 1 0 1.74 

T-MPC++ 20.1 (1.2) 1 0 1.83 

4 Autoware 28.4 (4.4) 5 0 1.31 

LMPCC 24.0 (3.2) 0 0 1.57 

T-MPC++ (w/o fallback) 24.2 (4.8) 3 1 1.56 

T-MPC++ 21.0 (1.7) 0 0 1.78 

Table 3 Scenario with randomly spawned pedestrians over 25 experiments. 

The quantitative results are summarised in Table 3. The following key performance 

indicators are reported: task duration [mean (std)], collisions, timeouts (vehicle did 

not reach the goal in time) and average velocity. The developed algorithm T-MPC++, 

with a fallback strategy, outperforms the other methods in task duration without 

compromising on safety. 



D5.1: System integration in the virtual testing setup 

©EVENTS Consortium 2022-2025                                                                                                           Page 22 of 64 

 

The Autoware baseline is the slowest planner and often collides. Autoware’s collision 

avoidance planner is experimental and does not guarantee collision avoidance. 

Furthermore, two motion plans in Autoware (collision avoidance and braking) are 

operated concurrently. When the collision avoidance module cannot guarantee 

overtaking of the obstacle, the braking planner is activated too late, leading to a 

collision. LMPCC (i.e., single trajectory MPC) performs better, it does not have 

collisions and is driving faster on average. Performance is still suboptimal, as it 

optimizes a single trajectory that may be far from the globally optimal solution. This is 

clear from the results of T-MPC++, particularly looking at the increase in task duration 

with an increasing number of obstacles. With two obstacles, LMPCC takes 1.6s longer, 

while T-MPC++ takes only 0.4s longer. T-MPC++, therefore, passes the obstacles more 

efficiently. Without fallback, the planner has to take emergency action (i.e., perform 

hard braking) when the nominal planner fails. With fallback, an alternative is available 

that may not require heavy braking and, as a result, can result in faster navigation.  

Trajectories of the four methods in one scenario with two pedestrians are shown in 

Figure 4 . Trajectories of the ego-vehicle and obstacles are shown in red and green, 

respectively, with increased transparency over time. The Autoware planner brakes for 

the obstacles, notice that it does not steer and stays stationary. LMPCC finds a poor local 

optimum and also does not steer to pass the pedestrians. T-MPC++ does steer to evade 

the pedestrians from behind, completing the task faster (visible in the less transparent 

trajectory around x=20). T-MPC++ with fallback strategy performs the same manoeuvre, 

but its safety is improved (demonstrated by less collisions in Table 3). 

  
Autoware LMPCC 

  
T-MPC T-MPC with fallback 

Figure 4 Trajectories of the four methods in one case with two pedestrians. 
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Further comparison of the methods is provided Figure 5, where the velocity profiles 

planned by the methods are compared for the same scenario. The Autoware planner 

brakes for the obstacles, leading to slow navigation. LMPCC finds a slow trajectory but 

keeps moving. T-MPC++ with and without a fallback strategy achieve similar 

performance, evading the obstacles around the reference velocity. All trajectories lead 

to a smooth velocity profile. In Figure 5, the reference velocity is denoted by the black 

dashed line. “tmpcnf” denotes T-MPC++ without fallback strategy, “tmpc” denotes T-

MPC++. 

 

Figure 5 Velocity profile of the four methods for the same scenario. 
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3.2 Experiment 2  

The objective of Experiment 2 is to evaluate the behaviour of an autonomous vehicle 

platoon as it navigates a roundabout, specifically focusing on maintaining platoon 

cohesion despite intermittent interruptions. The experiment consists of three CAVs 

entering and exiting a roundabout in a way that allows the platoon to remain together, 

even if one or more vehicles are temporarily required to yield to external traffic, 

leading to brief separation within the platoon. 

The experiment will be conducted in a hybrid environment using a real vehicle and 

CARLA simulator, which enables precise control and observation of the vehicles' 

behaviour. Additionally, the perception system on each vehicle includes detection, 

tracking, and motion prediction modules, which will work in unison to ensure that 

each AV can autonomously sense, interpret, and respond to its surroundings. The 

perception system runs on the simulator because the adversarial agents are only 

simulated. The experiment is designed to assess the platoon’s ability to manage 

temporary disruptions while maintaining coordinated movement through the 

roundabout. 

Experiment 2 represents a collaborative effort between two teams, Tecnalia and ICCS, 

an onsite and offsite integration respectively for virtual environments. The 

contributions have been coordinated and structured to reflect the expertise and focus 

of each team. This section details the integration of their respective developments 

into a cohesive virtual environment, highlighting the combined advancements in 

platooning control and V2X-based communication. 

3.2.1 Architecture and Design Considerations 

Simulation integration requires some specific considerations: the simulation 

environment chosen, which allows us to create a scenario and a custom map based 

on our real test track to replicate the experiment. In addition, the experiment has 

many components that need to run simultaneously, so we need to isolate the 

processes. Due to the high computational demands of this system, a High-

Performance Computing (HPC) system is required to run the simulation and automate 

three vehicles. Finally, we chose the Robot Operating System (ROS) for the 

communication between the nodes. 

Simulation environment 

Automated vehicle simulators have become an essential tool in the development, 

testing and validation of autonomous driving systems. These simulators provide 

virtual environments, where developers can evaluate vehicle behaviour, test 

algorithms, and experiment with different driving scenarios without risking real-world 

consequences. They enable the simulation of different driving conditions, such as 
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varying weather, lighting conditions and terrain, which are critical for comprehensive 

testing of autonomous systems. 

CARLA (Car Learning to Act) [3] stands out as an ideal choice  for EXP2 due to several 

reasons: 

• CARLA provides highly realistic environments, with detailed textures, dynamic 

weather, and lighting effects. This realism is critical when simulating complex 

driving scenarios, where visual cues, sensor accuracy, and environmental 

details can significantly affect vehicle behaviour. It is particularly useful when 

we want to analyse complex events that do not occur during normal driving. 

• CARLA provides an extensive API that allows for fine-grained control over the 

simulation. It allows developers to manage all the behaviours that occur during 

the simulation to force critical situations, as was done in EXP2. 

• Developers can create custom maps, control individual sensors, simulate 

traffic, and configure vehicle dynamics. This flexibility is essential for testing a 

wide variety of conditions and vehicle behaviours. Custom maps are 

particularly useful when we want to test specific roads or environments, such 

as EXP2, where Tecnalia's test track has been recreated in a simulation 

environment. 

• CARLA supports a comprehensive range of sensors that can be used in 

autonomous vehicles, including LiDAR, GPS, IMUs, radar, and cameras. These 

sensors are configurable in terms of position, orientation, and sampling rates, 

allowing for accurate and realistic simulation of perception systems.  

• CARLA integrates well with other simulation and development platforms, 

especially ROS. This compatibility makes it easier to incorporate CARLA into 

larger development pipelines and collaborate with other tools commonly used 

in autonomous vehicle research. Compatibility with ROS allows our 

architecture to be used without any special function to transform the 

parameters and transfer them to a real platform. ROS is the framework used 

by ICCS and Tecnalia to communicate developments that work together in 

EXP2. 

In summary, CARLA’s combination of high realism, configurability, extensive sensor 

support, and accessibility makes it an excellent choice for developing and testing 

autonomous vehicles in simulated environments. Its robust community and 

continuous development further ensure that CARLA remains a powerful and versatile 

platform for advancing autonomous driving technology. 
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Scenario  

To manage the proposed scenario in EXP2, we used the Scenario Runner package 

developed by CARLA’s developers, which is specifically designed to facilitate the 

execution of complex, scripted traffic interactions like the one presented in our 

experiment. Scenario Runner supports multiple formats, allowing for standardized 

and reproducible testing; in this case, we chose for the OpenSCENARIO [14] format to 

standardize our scenario description.  

Custom map 

The CARLA simulator's flexibility in scenario and map customisation allowed us to 

develop a tailored map (Figure 6) replicating the Tecnalia’s facilities (Figure 7), which 

can be seen in more detail in the EXP2 video. This customised environment ensures 

that we can test the experiment within a highly accurate, relevant setting. Moreover, 

it allows for hybrid simulations that integrate real sensor data and vehicle inputs , 

which will be developed in the context of T5.2, bridging the gap between virtual and 

physical testing for enhanced experimental fidelity. 

A fountain has been added to the custom map in the middle of the roundabout to 

make sure there are occlusions to challenge the perception system. 

 

Figure 6 Simulated custom map of Tecnalia’s test track. 
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Figure 7 Tecnalia’s Facilities. 

The creation of the custom CARLA map began with lane design, accomplished using 

Mathwork’s RoadRunner tool [15] . Leveraging OpenStreetMap data and orthophotos 

by PNOA [16] (Spanish National Aerial Topography Plan ), we generated a 

georeferenced OpenDRIVE [17] file to accurately represent the road network. Building 

models were created in Blender, using additional OpenStreetMap data to ensure 

structural accuracy, before being exported alongside the RoadRunner-generated files 

into Unreal Engine. Finally, we selected a pre-existing static fountain asset available 

within the CARLA project to complete the environment, integrating it seamlessly with 

the custom-built components. 

Isolation and containerization 

The entire architecture has been designed leveraging the versatility of Docker [18] 

containers, allowing for efficient modularization and isolation of each component. By 

compartmentalizing all elements of the system within separate containers, we 

maximize the benefits of isolation, ensuring that each module (such as perception, 

control, and communication) runs independently without interference from others. 

This approach not only enhances the stability and security of the system but also 

simplifies deployment, scaling, and troubleshooting, as each container can be 

managed, updated, or replaced individually. Docker’s containerized environment thus 

provides a robust foundation for developing, testing, and running the platoon’s 

architecture in a controlled and reproducible manner. 

We have built two main images, the first one runs CARLA Simulator and the control 

architecture, which has its own dependencies. And the second one oversees the 

perception suite, which needs a specific CUDA environment [19] and some deep 

learning libraries that have their own requirements.  

Both images take advantage of Nvidia Docker [20]  container (Figure 8). NVIDIA 

Docker, or more commonly referred to as NVIDIA Container Toolkit, is a tool that 



D5.1: System integration in the virtual testing setup 

©EVENTS Consortium 2022-2025                                                                                                           Page 28 of 64 

 

allows Docker containers to use NVIDIA GPUs for accelerated computing. This setup is 

especially useful for applications that require GPU support, like machine learning, data 

science, and autonomous driving simulations. Standard Docker containers do not have 

native GPU support, so the NVIDIA Container Toolkit is essential to bridge this gap by 

enabling GPU resources within containers. 

 

Figure 8 Nvidia docker container toolkit. [21] 

High-Performance Computing (HPC) 

Due to the computational requirements of EXP2, we have leveraged our computing 

units with an server grade HPC. The system in place has 64 threads of AMD EPYC 9124 

16-Core Processor CPU at 3.7 GHz, 768 GB of RAM at 4800 MHz and an Nvidia L40 with 

46 GB of VRAM. 

Developers connect to the server using ssh protocol [22] and can use the display 

interface thanks to a remote desktop. We have created a network system that allows 

more than one developer to connect at the same time, each with their own display, 

to use the simulator without disturbing other colleagues.  

To achieve this milestone, we are using Docker's ability to isolate networks to be able 

to use the same Docker image and code without having to change all the CARLA 

network ports (server, traffic manager, ...). Each user has their own network, which is 

automatically created when they deploy all the containers.  

Robot Operating System (ROS) 

Our automated vehicle architecture is based on ROS2, because it allows the workflow 

to be divided into nodes that can work in parallel. The communication between the 

nodes is done through topics, which contain all the information that needs to be 

transferred to the next segments of the architecture. These topics can contain raw 

data (images, point clouds, ...) or processed information (detections, control 
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commands, ...). We use ROS2 Humble [8], which has an end of life (EOL) date of May 

2027, allowing us to use this architecture for several years with security updates. 

Additionally, we integrated the CARLA ROS bridge [23], which includes services for 

reloading and controlling scenarios directly through ROS. This integration ensures 

seamless interaction with the CARLA environment, enabling efficient Software-in-the-

Loop (SiL) testing and rapid scenario reloading. By leveraging this setup, we achieved 

an optimal testing environment where the proposed scenario could be consistently 

recreated, supporting robust analysis, and testing of platoon behaviour under varying 

traffic conditions in a roundabout. 

3.2.2 Step-by-Step Integration Process 

Onsite Integration 

The following section details the steps/subsystems that make up EXP2. We have based 

our experimental integration on two Docker images (CARLA Image and Perception 

Image), which form the basis of various containers that launch some nodes. 

Figure 9 shows the complete architecture of this proposal, where eighteen containers 

are launched. Three are responsible for the CARLA server (CARLA World, Scenario 

Manager and Scenario). These are followed by five containers for each vehicle 

(control, detection, tracking, motion prediction and data collector).  
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Figure 9 Experiment 2 architecture. 
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CARLA Image 

We have created a custom image that met all the simulation requirements. We 

installed the CARLA binary distribution using a custom one based on CARLA 0.9.14 and 

Python 3.10 [24]. This last requirement is due to the fact that we need Ubuntu 22.04 

[25] for ROS2 Humble and it uses Python 3.10 natively. When building the image, we 

need to share the user id of the host to run and modify the code, which is hosted in a 

shared volume. 

When we run the container, we share some environment variables that are needed to 

run the simulation. We share $DISPLAY, $ROS_DOMAIN_ID and the $EVENTS_PATH, 

the last variable being the shared path where all the code is allocated. We also share 

some volumes and files where the code is stored, and the custom network built for 

the user. 

One vehicle control 

Each ego vehicle needs a total of 8 nodes to coordinate the control:  

• Global planner: There are two modes integrated for global path generation, 

relevant to this experiment. If the vehicle is on the leader position the global 

path is generated using Dijkstra algorithm [26] on the CARLA map information 

for an initial and goal position. If it is not, the global path updates with the 

position of the leader vehicle with a frequency of 20Hz. 

• Behavioural: This node manages Platoon Management Messages (PMM) and 

Platoon Control Messages (PCM) to determine, first, if the ego vehicle is in a 

platoon and second, if it is, which is its position. 

• Localization: This node acts as a parser of the GNSS sensor to the relative 

position inside the map. Additionally, it composes the state of the vehicle by 

reading IMU and Speedometer data form the CARLA ROS bridge. 

• Trajectory generator: the trajectory of the vehicle is generated using 

information from the global planner node, as well as the information of the 

surrounding vehicles in the platoon. Interaction with obstacle is added through 

the communication with the perception stack. 

• Longitudinal control: This is the low-level control that generates the throttle 

and brake values based on the speed error. 

• Lateral control: This node reads the local path created in the trajectory 

generator node as a reference to calculate the steer value. 
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• Control Bridge: This node parses the control values to feed the CARLA ROS 

bridge. 

• Communication: The communication node, in this case acts as a virtual 

communication node, where virtual Cooperative Awareness Messages (CAM), 

Decentralized Environmental Notification Messages (DENM), PCM and PMM 

messages are sent, received and parsed into manageable information for the 

other nodes. 

 

Figure 10: One vehicle control ROS architecture. 

Perception image 

The perception image requires some libraries to run the deep learning models for 

detection and motion prediction. We have combined both requirements into one 

docker image to use the same for both tasks. It is based on an Nvidia image with CUDA 

12.0 and cudnn 8 with Ubuntu 22 for ROS2 Humble.  

One vehicle perception 

Each vehicle has its own perception suite, which consists of three main nodes, all built 

from the perception image. The first is responsible for detection and has LiDAR input 

from the vehicle. The second performs tracking from the environment and requires 

the detections from the previous node and the global transformation. Finally, the last 
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node is responsible for motion prediction, which was developed in the EVENTS 

project. It needs the tracking objects, the position of the ego-vehicle and the global 

transformation.  

Scenario 

The OpenScenario [14] file has been developed using QGIS [27]with a plugin that let 

us connect to a CARLA server, load the OpenDrive [17] information from the active 

map and customize the scenario with the available vehicles or pedestrians. Moreover, 

the plugin allows for vehicle behaviour customization, which contributes to the 

complexity of the scenarios created. 

In the specific case of EXP2, the scenario counts with three ego vehicles set in a line 

before the roundabout and 2 other vehicles that act as obstacles, driving at a constant 

speed around the roundabout guided by an array of waypoints. 

Reinforcement Learning integration 

Integration with the reinforcement algorithm required a special setup, as training this 

tool requires many steps to find the solution.  

First, the information is fed into the algorithm via ROS2, which synchronises all the 

data from different sources.  

With all this data synchronised, we faced the problem that the whole setup would not 

be able to run during long runs. So, we prepared some health checks for each 

container and some global checks to restart the simulation. 

Container HealthChecks 

As mentioned earlier, each container has its own health check to assess the 

performance of the node, and if there is an error or bug, the node is restarted.  

We will detail the health check for each node: 

• CARLA Server: check the world frame rate to assess the node. If this frame rate 

is below a threshold, the node will be restarted.  

• Scenario: a variable is published to indicate that the node is alive. If this 

variable is not published with a frequency greater than a threshold, the node 

will be restarted.  The CARLA server is also checked to restart the node, 

because if the server is restarted, the scenario node should also be restarted 

to connect the two environments. 

• Scenario manager: a variable is published to indicate that the node is alive. If 

this variable is not published with a frequency greater than a threshold, the 
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node will be restarted. The CARLA server is also checked to restart the node, 

because if the server is restarted, the scenario manager node should also be 

restarted to connect the two environments. 

• Ego-vehicle control: check the world frame rate to assess the node. If this 

frame rate is below a threshold, the node will be restarted.  

• Detection: the output topic must have a frequency above a certain threshold, 

otherwise the container will be restarted.  

• Tracking: the output topic must have a frequency above a certain threshold, 

otherwise the container will be restarted.  

• Motion Prediction: the output topic must have a frequency above a certain 

threshold, otherwise the container will be restarted.  

Figure 11 shows an example of a health check of the motion prediction container. This 

behaviour can also be seen in the EXP2 video. 

In addition to these considerations, there is a global variable that checks that the 

whole system is running correctly; if this variable is true, the whole system is restarted 

to continue training.  

Restarting the nodes is made by a community docker called autoheal [28].  

 

Figure 11: health check of a node. 

With this system, we can check the logs of the containers to know the actual status 

of each one. For this purpose, we use a tool called Portainer, which is a container 

management tool (Figure 12). This tool is demonstrated in the EXP2 video, which 
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shows full orchestration.

 

Figure 12: Portainer architecture for one vehicle. 

Three vehicles integration 

To extend this architecture to three vehicles, we need to triple the following nodes: 

ego-vehicle control, detection, tracking, motion prediction and data collection.  

We then share the information from each agent with the others to take advantage of 

the V2X perception system.  

Offsite Integration  

As described in the section above, an additional virtual deployment has been setup to 

aid in the tasks related to V2X communication of the a coordinated platooning, more 

specifically based on Collective Perception (CP) information exchange among the 

agents forming the platoon. For virtual testing of the CP module, an additional 

simulation environment has been setup in CARLA (v.0.9.14)1 to support the following 

core functionality: 

▪ Custom scenario editing in CARLA; 

▪ Simulation and sensor data recording mechanism for multiple agents: CARLA 

simulation data (groundtruth), sensor raw data, sensor data as rosbags ; 

▪ Data replay in CARLA; 

 
1 https://carla.org/2022/12/23/release-0.9.14/ 
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▪ Interfacing the CP module with CARLA for real time experiments via CARLA-

ROS bridge; 

▪ Support for hybrid testing via real-time communication of a real agent in ICCS 

test track with EVENTS simulation environment.   

 

Figure 13 CARLA environment bird-eye-view snapshot. 

In Figure 13, a roundabout scenario with occlusions (buildings, other vehicles, 

roundabout static) is executed with agents capable of generating sensor data: on the 

left window a snapshot of the bird’s eye view roundabout scenario is depicted; on the 

right window, the RGB camera output of the black vehicle approaching from the north 

is depicted – other agents’ camera output can also be depicted (our setup 

accomodates up to 7 agents visualized simultaneously). 

Two testing modes, one offline and one online, are supported by the ICCS virtual 

testing pipeline as shown in Figure 14 below. 

 

Figure 14 Virtual testing pipeline a) offline and b) online testing modes. 

Notes: Main CP testing is via data replay; CPMs are encoded in a custom format similar 

to ETSI CPM to be consumed by CP python module. 
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Data replay support (offline testing) 

Simulation data replay happens via CARLA replaying system2, while sensor data replay 

is supported either via Rosbags or via raw sensor data recordings. Those recordings 

feed the CP module developed in WP3 for testing purposes. 

CARLA environment setup 

CARLA custom scenario editor: A python-based library was created to simplify 

scenario editing in CARLA with the requirement to support scenario creation for 

perception layer testing, where one ego is configured through initial position and 

route (set of waypoints) and all the other agents follow their pre-set route and drive 

relative to that ego (i.e., no collisions occur and speeds are relevant to the speed of 

the ego). Spawning of objects (static or dyamic) anywhere in the scene is easily 

supported by CARLA. In our setup, apart from the connected vehicles entering a 

roundabout, a static camera is also used, spawned at an elevated location at the 

center of the roundabout. This is used for gathering groundtruth scene data. 

CARLA LiDAR configuration: the configuration of the CARLA emulated Velodyne Lidar 

parameters (sensor.lidar.ray_cast3) to match our real LiDAR (VLP-16 Velodyne): 

{'range': '50', 'rotation_frequency': '30', 'points_per_second': '300000'}). 

CARLA synchronous and asynchronous mode of operation: Synchronous mode of 

operation is used for all EVENTS virtual experiments in order to ensure repeatability 

of scenario-based testing process. Asynchronous mode may be selected in the case of 

a hybrid experiment setup, where data from a real agent shall be displayed in a CARLA 

scenario with multiple virtual agents. 

CARLA KPIs logging 

A small set of execution KPIs are automatically logged in each run: 

▪ Scenario execution duration 

▪ Collisions (de-activated but available) 

▪ Average velocity of each agent [m/s] 

▪ Minimum TTC and distance to other agents 

▪ Computation time 

CARLA Hardware: The experiments ran on a laptop ASUS ROG AMD Ryzen 9 7940HS; 

32GB Ram DDR5 5200MT/s; IntegratedGPU Radeon 780M Graphics; DedicatedGPU 

 
2 https://carla.readthedocs.io/en/0.9.7/recorder_and_playback/ 
3 https://carla.readthedocs.io/en/latest/ref_sensors/#lidar-sensor 
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NVIDIA RTX4060 mobile; Manjaro Linux 24.1.2; Linux Kernel 6.12; NVIDIA driver 

550.120. 

Interfacing an external ROS-based module: In order to support real-time simulation 

and CP testing, two external modules had to be interfaced with CARLA via CARLA-ROS 

bridge, as shown in Figure 14.b .The two modules are the on-board perception module 

developed by ICCS using camera-based perception (YOLO [29] was used) verified by 

lidar and the CP module responsible for the fusion of all agents’ CPMs and the creation 

of a scene CPM which is transmitted back to the connected agents. 

Hybrid testing support (future work for experiment that is also part of T5.2) 

CARLA real world interface: within EXP2 an additional experiment, part of T5.2, includes 

a real vehicle deployed on ICCS premises, communicating in real-time with the ICCS 

CARLA environment. For this purpose, message queuing services (using gRPC or MQTT 

protocols) will be supported at the side of the real node (ICCS prototype vehicle) 

offering real-time connectivity with the CARLA PC which will integrate an 

appropriately configured connectivity gateway (gRPC adapter).  

Importing OSM map data to CARLA : A prerequisite for hybrid testing is that real test 

track topology, lanes, environment can be reproduced inside CARLA via a custom map 

importing. For this purpose the functionality of CARLA v.0.9.154 will be used while a 

digital map of ICCS premises (NTUA campus) is already available from T3.1 (see project 

deliverable D3.2 [30]) using the RoadRunner-CARLA pipeline for map creation from 

OpenStreetMap format. 

3.2.3 Key Challenges and Solutions 

The key challenge we faced was to achieve a smooth rendering experience in CARLA 

while multiple sensors generating big size data (RGB and Lidar data from multiple 

agents) could be recorded simultaneously. To do that the following actions were 

needed: 

▪ CARLA modules that we do not need for the experiment and require 

computing resources are deactivated: that is ‘lane keeping’ and ‘collision 

notification’ sensor. 

▪ Logging on a MMAP file on a tmpfs (RAM filesystem) for quick logging: we use 

a shared memory file mechanism for logging the data in a tmpfs (RAM) 

filesystem file, reducing the time required for writing all the amount of data 

from all the agents and sensors to an m.2 NVME SSD. By reducing the data 

storing time we can achieve simultaneous storing and human perception-

 
4 https://carla.readthedocs.io/en/0.9.15/adv_digital_twin/ 
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suitable rendering quality. RGB images are rendered and logged at a resolution 

of 800x600 pixels. 

One of the main problems with full integration was the large number of modules that 

needed to work together. They also needed to be stable and able to be restarted if 

they failed. In addition, there are often two deep learning models per vehicle plus the 

CARLA simulation that need to run on the GPU. So we built everything on an HPC 

server, which does not allow the kind of development that can be done on a desktop 

PC. To solve the above situations, we take the following actions: 

• Each module has its own container, which runs in isolation and is tested every 

20 seconds to make sure it is working properly. We use Docker Compose and 

its tools to test the health of the containers. In addition, the test checks assess 

the frame rate of various variables using ROS2 to evaluate the performance of 

the container. If it is not running properly, it is restarted to continue. This 

behaviour is critical for the RL integration, where the simulation needs to run 

for hours at a time. 

• The entire simulation environment runs on an HPC with a dedicated NVIDIA 

GPU for server platforms, which has no display outputs. We simulate these 

displays and build a custom one for each developer using the server. 
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3.3 Experiment 3  

EXP3 focuses on the self-assessment of the onboard perception system within the ego 

vehicle. This newly developed self-assessment approach [31], [32], [33], [34], [35], [36] 

will be integrated into Ulm University's test vehicle. Before implementation on the 

test vehicle, the approach is tested and validated through simulations, which replicate 

the entire architecture and software stack. These simulations include the onboard 

perception self-assessment system, complementary V2X data in the form of CPMs 

from an infrastructure pilot site, the fusion of onboard perception with external CPMs, 

and behavioral decision-making to support trajectory planning. 

3.3.1 Architecture and Design Considerations 

The architecture for EXP3 is illustrated in Figure 15. To implement and integrate this 

architecture into the software stack, key modules had to be developed and validated. 

These modules include: 

1. Object tracking with self-assessment, 

2. V2X data integration via CPMs, 

3. CPM and track list fusion, and 

4. Behavioral decision-making. 

 

 

Figure 15: Overall architecture of EXP3 modified from D2.2 [37]. 

The object tracking with self-assessment module underwent initial testing in isolated 

and simplified simulation environments, such as the tracking simulation framework 
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[38]. This phase focuses on analyzing various potential errors in object tracking and 

validating the self-assessment module's ability to monitor and identify these errors or 

disturbances. Results from this stage are documented in [33], [34], [35], [36]. 

After demonstrating its functionality, the self-assessment module was implemented 

within the comprehensive simulation environment for EXP3. This integrated internal 

virtual environment, developed at Ulm University and basically described in [7], allows 

for the testing of the full software stack. Within this environment, all modules—

including V2X data handling, fusion processes, and decision-making—are combined to 

evaluate the architecture holistically under simulated conditions. The tool allows to 

simulate human driven vehicles with realistic behavior as well as CAVs on a provided 

map in lanelet2 [39] format. The used map reflects the roads at the pilote site in the 

suburban area of Ulm-Lehr, where the evaluation in real traffic will be performed. 

The used simulation environment is illustrated in Figure 16. This figure provides an 

example of various elements involved in the creation of the CPMs in EXP3, offering 

insights into the simulator and its functionality. Note, however, that the simulator and 

its simulations are primarily demonstrated visually in the corresponding video created 

for this deliverable. The cameras’ fields of view of the intersection used in EXP3 are 

represented as rectangles that indicate the coverage areas of the cameras. In addition, 

the 3D Tracks, depicted as solid blue bounding boxes, represent the object tracks in 

3D space, which are used to generate the CPMs. These tracks are based on the 

detections appear as light blue outlined bounding boxes, showing the detected 

objects extracted from camera images in 2D. Note that the detections are mostly 

hidden under the tracks, making them hardly visible in the figure. The ground truth, 

which is avaible in simualtion, is shown in light green, representing the true 2D 

bounding boxes for the objects. Also, the ground truth is hardly visible behind the 3D 

tracks, which indicates good tracking performance. 
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Figure 16: Simulation environment for Experiment 3 based on a software-in-the-loop 
framework [7]. 

 

3.3.2 Step-by-Step Integration Process 

This subsection outlines the step-by-step procedures followed to integrate EXP3 into 

the simulation environment, covering the key tasks, software modules, and challenges 

encountered during the process. 

The key tasks for the integration process are: 

1 Module Development and Testing: The core modules for EXP3 were developed 

and validated independently to ensure functionality. This included object tracking 

algorithms and self-assessment mechanisms. Early testing was conducted in 

simplified simulation environments such as the tracking simulation framework 

[38]. 

2 Simulation Environment Setup: The simulation environment was established 

using Ulm University's virtual simulation environment, based on [7]. This 

environment allowed the integration of Experiment 3 alongside complementary 

modules from the whole software stack. 

3 Integration of EXP3 Components: V2X data in the form of CPMs was incorporated 

into the simulation. This data was fused with an onboard object tracking outputs 

to augment the perception field of view. 
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3.1 Object Tracking with Self-Assessment: The object tracking module, equipped 

with self-assessment capabilities, was developed in WP3 (will be described in 

deliverable D3.2) to monitor and evaluate the reliability of detected objects in 

real-time. This module serves as the foundation for detecting and addressing 

tracking errors, ensuring accurate perception. 

3.2 V2X Data Incorporation: Cooperative Perception Messages (CPMs) were 

integrated as an essential V2X data source. These CPMs, generated from an 

infrastructure pilot site, provided an extended perception range beyond the 

onboard sensors. 

3.3 CPM and Track List Fusion: A dedicated fusion module was implemented to 

combine the onboard object tracking outputs with external CPM data. This 

fusion process augmented the vehicle's perception field of view and enhanced 

the accuracy and robustness of the perception system. 

3.4 Behavioral Decision-Making Module: This component processes the fused 

perception data to enable informed decision-making. It incorporates 

information from the self-assessment on the reliability of the ego vehicle’s 

perception to determine whether the trajectory planning module can operate 

normally or should prioritize a safe stop point, utilizing V2X data.     

4 System Validation: The integrated system underwent iterative testing to evaluate 

the interaction between modules, focusing on robustness and error handling in 

various simulated scenarios. 

3.3.3 Key Challenges and Solutions 

1. Interfacing Modules: Ensuring seamless communication between the self-

assessment module and other components, particularly during error flagging, 

required extensive debugging and iteration. 

2. Error Modeling: Accurately simulating various object tracking errors to test the 

self-assessment module required significant effort to achieve realistic 

conditions. 

Despite these challenges, the integration of EXP3 into the simulation environment was 

successfully completed, providing a robust platform for further testing and validation 

of the developed modules. 
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3.4 Experiment 6 

The goal of this experiment is to propose a perception system, which can detect an 

object at a far range in adverse weather conditions. The system has to estimate the 

relative distance and classify the object as over-drivable or non-drivable. In the 

scope of EXP6, scenario is the following , the ego vehicle is driving straight forward 

to the debris as shown in the Figure 17. Differents parameters will be introduced as : 

ego vehicle speed , orientation of debris in regards to road axis , lateral position 

offset of the debris in regards to ego vehicle position , and debris’s material, shape 

and size. 

 

Figure 17 EXP6 Scenario definition 

3.4.1 Architecture and Design Considerations 

To guarantee a working and effective architecture ,the base for the realisation of the 

experiment, an existing virtual simulation system composed of of a third party tool 

and an Aptiv software was used. This base is shown in Figure 18. The system consists 

of a Realtime Environment Simulation Provider. In this case, a dSPACE System was 

used, which provides ground truth to other system components via OSI (Open 

Simulation Interface) SensorView and offers CAN/ETH interfaces if closed Loop 

functionality is required. 

 

Figure 18 Initial Virtual Simulation System architecture 

The ground truth is used by the Virtual Environment (VE) Engine that runs two 

different Models. The first one is  realtime APTIV Radar Model, which generates APTIV 

Radar specific detections based on the moving and static objects in the OSI 

SensorView. The Aptiv Radar detections then are fed into the APTIV Radar Logic 



D5.1: System integration in the virtual testing setup 

©EVENTS Consortium 2022-2025                                                                                                           Page 45 of 64 

 

Model, which contains all components that are part of the APTIV Radar SW. 

Depending on the requirements, this contains a Radar Tracker, Radar Feature 

Functions, and the representation of the physical communication interfaces (CAN, 

ETH). The Environment Simulation is parametrized with a fitting Scenario, which 

consists of a Road Environment and a driving scenario. 

To integrate the over-drivable feature into the proved solution, in the first step, the 

Virtual Scenario and the APTIV Radar  Model needs to be adapted to contain objects 

that fall under the consideration of the over-drivable feature. As OSI SensorView is the 

interface to the APTIV Radar model, those objects need to be configured with OSI 

object definitions as well. Once Environment Simulation and APTIV Radar Model are 

updated with the new Objects, the APTIV Radar Model will provide detections for 

those objects which are handed to a standalone SW block of the over-drivable 

function. This architecture provides first results and can be used to evaluate the 

performance of both the APTIV Radar Model and the over-drivable feature function. 

The modification is depicted in Figure 19. 

 

Figure 19 Integration of over-drivable OSI objects 

As the final step, the standalone over-driveable Feature Function needs to be 

integrated into a APTIV Logic Model, to be executed next to all other features of the 

APTIV SW. 
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Figure 20 Final integration architecture 

3.4.2 Step-by-Step Integration Process 

From the above defined architecture, the different integration steps are as follows: 

1. Environment Simulation 

a. Debris objects definition : during this step we defined all relevant 

Objects with OSI specification in Environment Simulation Tool 

b. Scenarios definition : we created Scenarios and Roads including 

relevant Objects 

2. Radar Model 

a. Support for relevant OSI objects : we added mesh support for relevant 

OSI Objects  

b.  Radar Model Detections validation : we compared test track data to 

simulation data 

c. Radar Model Detections : we cooperated with Tracker team (team who 

develop and integrate sensor data algorithm fusion block) to ensure 

detections are valid for static object feature 

3. Logic Model 

a. static object feature into Logic Model Integration : we integrated the 

algorithm block 

b. Validation : we validated output data of Logic Model block by checking 

same behaviour seen by our Tracker team  

4. System Test : we tested the global setup to check performances 
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Below, the different involved components are explained in detail and the steps leading 

to the final system are described. 

Environment Simulation 

The simulation environment used in this experiment was dSPACE ASM  (Automotive 

Simulation Models) in combination with a dSPACE Scalexio Real Time (RT) Hardware. 

The dSPACE Scalexio is running a combined model for environment, road, traffic and 

host vehicle ego motion, so that the wide range of required parameters can be 

considered.  

This setup enables the creation of realistic virtual scenarios, which are used within the 

Realtime Environment Simulation to feed radar models with OSI ground truth data 

(Open Simulation Interface). Accurately modelling these scenarios is critical to 

providing realistic input for sensor perception. 

A specific scenario was designed to incorporate debris object positioned at a varying 

distance. In this scenario, the ego vehicle travels at a constant speed of 65 km/h on a 

road devoid of guardrails, starting at a distance of 350 meters. 

To evaluate the radar perception algorithm’s capability in assessing driveability, 

diverse types of debris objects where introduced. The objects shown in Figure 21 were 

selected for this purpose: These objects, beside their localisation and visualisation 

inside of the Environment Simulation, were parametrized as OSI objects. 

 

Figure 21 Example of implemented debris objects 

Radar Model Development 

The core focus of the radar model development is to replicate the physical behaviour 

of radar sensors. It uses OSI ground truth data to generate perception point clouds 

that simulate radar detections. 
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The primary goal for this experiment was to integrate objects relevant for the SG 

Feature into the existing Aptiv sensor model. This included: 

• Integration of Debris OSI Objects into APTIV Radar Model.  

• Validation of radar sensor model vs. real world data to cover use-case's 

small objects with high fidelity based on initial real world data 

Beside from the adaptions made for the APTIV Radar Model, the consequently step 

was collaborating with the Static Geometry Feature developers to adjust the model 

parameters to achieve maximum alignment with real-world conditions. Following that  

we conducted extensive testing and validation to ensure the simulated radar 

detections function as intended. 

Logic Model: The APTIV Logic Model is tasked with integrating APTIV Radar Features 

as runnable Functional Mock-up Unit (FMU). It takes the APTIV Radar Model 

Detections as input and runs all other features that are part of the Radar system. 

Together with the APTIV Radar  Model, it is the virtual representation of an APTIV 

Radar System. It allows for a full evaluation of the Radar SW components via Live data 

injection and generated debug files or Live Data output. 

For this experiment, the functionality of the Static Geometry (SG) feature was  

integrated into an existing Logic Model, so that it can run together with Tracker and 

ADAS Features and as part of the Realtime system, making it an equivalent alternative 

for real world Vehicle tests. Fully integrated, the Logic Model allows to validate 

components depending on the SG Feature like Motion Planning algorithms. 

3.4.3 Key Challanges and Solutions 

To get the proper output, the existing APTIV Radar Model for the APTIV Front Looking 

Radar had to be tuned to match the behaviour of the used SW/HW combination. 

Parameters like field of view, range, and mounting positions had to be adapted to the 

virtual Host vehicle.  

The Environment simulation does not contain debris objects by default. Although it is 

possible to define new OSI objects and define their parameters, those 3D Objects had 

to be implemented in the Sensor Model as well to have a proper representation.  

Whenever a new functionality is implemented, it takes time until the tooling support 

is established. Thus, it was necessary to use an alternative approach for validation to 

ensure results can be created and analysed. 
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3.5 Experiment 7  

As part of Experiment 7 extended description*, ICCS aims to integrate a Machine 

Learning module which jointly conducts prediction and planning (Joint PP) for 

autonomous vehicles testing within a virtual simulation environment. We consider 

various scenarios in highway environment with traffic which test the autonomous 

vehicle under various critical conditions including cut-ins, breaks and merges. The 

open-source nuPlan simulation environment was selected due to its closed-loop 

simulation support and its popularity in the automotive research community. In this 

deliverable, the integration software details are reported, with the algorithmic and 

mathematical counterparts presented technically in deliverable D4.3 [40]. 

*Note: As it is already reffered in the introductory part of this deliverable, this is a new 

part of ICCS work that was taken over in the context of WP4 based on the second 

project amendement (approval is pending at the time of writing) and which is still 

under development. What is reported here is the progress we made till this 

deliverable’s submission date. 

3.5.1 Architecture and Design Considerations 

Figure 22 below demonstrates the virtual training setup, which uses samples from the 

nuPlan database from various scenarios. The number of simulation steps K and 

reaction steps K’ is a hyperparameter, to be chosen dataset-dependent. The simulator 

logs trajectories and vectorized maps to feed the ML systems (prediction, planning). 

Specifically, the input is training samples consisting of vectorised agent and map 

locations (i.e., logged 2D trajectories) and semantic information (traffic states, vehicle 

types and identities, etc.) logged in the given database as annotations. The simulation 

steps analytically are: 

• Input Preprocessing: Vector objects are extracted from the Perception database and 

arranged in a tabular fashion (and min-max scaling is applied as required by the 

following deep learning modules. Two submodules are considered one for Agents 

and one for Maps  which extract feature representations that feed into the next ML 

components of the framework for prediction. 

• Joint Prediction and Planning (PP) call: Forward pass of (learned) features by our 

proposed system that outputs a traffic-compliant time-series of non-ego agent 

trajectories (predictions) and ego agent trajectories (plans) for the next K’ frames, 

given K simulation step input previously. 

• Differentiation Engine: Framework with automatic differentiation capabilities 

(PyTorch) to backpropagate gradients and update the weights of each Deep 

Network in the Joint PP system. 

• Simulator: Closed-loop simulator accepting the prediction and planning 

outputs of Joint PP system. The simulator executes the motion plan for ego 
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vehicle using the control system equations and computes the prediction and 

planning metrics for the current training segment and visualizes results 

during runtime. 

• Metric logger: Logging module monitors and plots the prediction and planning 

metrics online during the inference section of time window Tp for the current 

segment. This section outlines the architectural framework and design 

principles guiding the integration of prediction on the NuPlan simulator, 

focusing on system requirements and interoperability with other/existing 

components. 

 

 

Figure 22 Virtual training Setup of Joint Prediction and Planning system 
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Figure 23 NuPlan Framework High-Level software description where green color denotes 
modules that had to be adapted by ICCS. 

3.5.2 Step-by-Step Integration Process 

As observed from Figure 23, we have added extra predictive functionality with ML 

components for the non-ego vehicles, together with an integrated package for 

merging prediction and planning in a modular, differentiable manner. NuPlan provides 

a configurable environment via Hydra configuration files, which we edit to add to the 

Joint PP approach. Specifically: ICCS changed the ”Observations”, which correspond 

to the input features consumed by the planner module to conduct inference on ego 

agent future trajectories, by adding additional prediction features (non-ego agent 

trajectories) as a custom class attribute by changing also the custom Hydra 

configuration file for the NuPlan simulator. The prediction module continuously 

updates a ”prediction trajectory” field stored for each agent as an “Observation” class 

in simulation. On a high-level, the framework at each iteration step assigns the 

predicted trajectory state sequence, together with historical tracks of each agent as 

observations (for details see deliverable D4.3 [40]) and the feature builders of NuPlan 

construct features for planning accordingly. We further change the planners by 

expanding their input dimensionalities to consume non-ego agent tracks (3D pose 

information), for most planners as flattened vectors on the regression head. Further, 

we expand on the metrics for evaluation, including those relevant for Joint PP 

evaluation (see D4.3 [40]). Finally, the vizualisation board was edited, to show non-

ego trajectory prediction lines, next to the actual controller output. 

The key objectives for the integration process are listed below: 

1. System Integration. NuPlan adopts a modular pipeline in terms of hardware 

resource allotment for each component for building model features and targets 

for learning(preprocessing) and training, hence correct assignment of data into 

CPU for the preprocessing steps and GPU for training, validation and testing 

ensures correct allocation of memory, avoiding high disk memory pressure. 
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2. Scenario Filtering: NuPlan logs and vehicle tracks are divided into various 

scenario tags, specifically: { ”medium magnitude speed, near construction zone, 

near multiple vehicles , on intersection, stationary in traffic, traversing traffic light 

intersection”}.A custom filter module is being developed to retrieve scenarios 

which best meetsthe operational design domain of the EXP 7.  

3. Correct Assignment of Features for Preprocessing: Selecting the correct features 

(object tracks as poses, HD map features) and assigning them as ”observations”, 

which are fed to preprocessing modules, ensures seamless communication of the 

simulator with the feature building modules of the planning models in NuPlan 

and correct training of ML models. 

4. Module Development and Validation: Each module of EXP7 was trained and 

tested individually, i.e., Predictor, Planner, in the simplest core configurations in 

terms of: {scenario, controller, map, perception model} in open and closed loop 

simulation protocol to validate standalone performance prior to integration. 

5. Behavioral Decision-Making and Trajectory Prediction: Development and 

integration of trajectory forecasting module presented in D4.3 [40] which 

regresses the non-ego waypoint time-series given features supplied by the 

simulator during runtime. Meeting time restraints for predictor inference is 

critical to meet the planners input data requirements and ensure quick 

simulation iteration. 

6. NuPlan Dashboard trajectory vizualization: The NuPlan visualization 

component, nuBoard, was modified to show non-ego trajectories forecasted by 

the Prediction module and the Ego Trajectory computed by the standalone 

NuPlan vs the integrated NuPlan to be compared qualitatively. 

3.5.3 Key Challenges and Solutions 

The NuPlan simulator is originally designed for planning of the ego vehicle without 

considering non-ego vehicle trajectory predictions, which was previously shown to be 

of high importance in decision making. Hence a multitude of challenges was faced in 

understanding complex undocumented code responsible for feature and ground truth 

extraction and complementing with code necessary for prediction of non-ego vehicles. 

Further, the metric structure of the evaluation had to be modified, as well as the 

vizualization code for the dashboard, to include key metrics necessary for joint 

prediction and planning, including dynamic ADE (Average Displacement Error), 

FDE(Final Displacement Error) etc. 
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3.6 Experiment 8  

EXP8 focuses on emergency evasion manoeuvre on slippery road under rain 

conditions. The objective is to avoid collisions (e.g., pedestrians or cyclists) in poor 

weather conditions on slippery roads. The scenario replicates a classical double-lane 

change manoeuvre involving two static / slowly-moving obstacles, which the vehicle 

must avoid. Heavy rainfall reduces the road friction coefficient to 0.5, thereby 

increasing the manoeuvre’s complexity and requiring precise control strategies, see 

Figure 24. 

 

Figure 24 Collision avoidance scenario with two obstacles. 

In this scenario, the vehicle encounters unexpected obstacles with limited visibility 

due to adverse weather conditions, necessitating an immediate and aggressive 

response. The evasion manoeuvre involves several critical stages. First, the vehicle 

executes heavy braking to reduce speed rapidly while initiating a sharp cornering 

manoeuvre to bypass the obstacles. Following the initial evasion, it must perform 

another cornering event to return to its original lane while simultaneously 

accelerating to mitigate the risk of a rear-end collision. This sequence of actions 

inherently involves complex interactions between longitudinal and lateral tyre forces, 

creating a highly nonlinear control problem due to tyre-road interactions in the 

presence of reduced friction. 

3.6.1 Architecture and Design Considerations 

To address the scenario’s complexity, our virtual environment incorporates unique 

characteristics that ensure accurate modelling and testing: 

1. High-Fidelity Vehicle Plant Model: The nonlinearities arising from suspension 

kinematics and dynamics, tyre forces, and the braking system necessitate a 

highly accurate and robust vehicle plant model. We use a high-fidelity 

simulation environment such as IPG CarMaker [4]. The vehicle model was 

parameterized using mass-inertia data from a vehicle inertia measurement 

facility, suspension kinematics, and compliance characteristics obtained from 
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testing on a Kinematics & Compliance test rig for wheel suspension analysis. It 

was then validated through field tests conducted on a proving ground [41]. 

2. Advanced Tyre Modelling: The coupled dynamics of longitudinal and lateral 

tyre forces require an accurate and robust tyre model. For this, we employ the 

Delft Tyre Model [42], recognized for its effectiveness in capturing tyre 

dynamics and nonlinear behaviours, even under adverse conditions, and also 

experimentally validated. 

3. Optimized Model Predictive Control (MPC) Framework: The proposed control 

solution leverages an MPC framework to address nonlinear control challenges, 

integrating real-time motion planning, path tracking, and stability constraints 

while considering powertrain and braking limits, using ForcesPro for fast, 

reliable nonlinear optimization solutions. 

4. Real-Time Feasibility Testing: To ensure real-time feasibility, the controller is 

developed in MATLAB using ForcesPro [43]. For real-time testing, it is 

translated into C++ for faster execution, providing lower-level control 

compared to interpreted environments. 

The complexity and unique requirements of EXP8, including the need for a high-fidelity 

vehicle plant model and an advanced tyre model, necessitate the creation of a unique 

architecture for developing and validating the proposed control solution. 

The fast development architecture is focused on three essential requirements to 

support efficient control strategy design. First, it must provide access to a high-fidelity 

simulation environment validated with experimental data. For this, we employ IPG 

CarMaker [4] in combination with the Delft-Tyre model [42], ensuring that simulations 

closely mirror real-world dynamics and accurately capture nonlinear tyre-road 

interactions. This high-fidelity modelling is critical for robust control design. Second, 

the architecture must support rapid evaluation and iterative testing of design 

concepts within a unified multidomain simulation environment. This capability 

accelerates the development cycle, allowing for the refinement of control strategies 

in a flexible, adaptable manner. Third, the architecture must facilitate the generation 

of C++ code suitable for deployment on the embedded systems used in EXP8, ensuring 

smooth transitions from simulation to implementation. 

MATLAB/Simulink is serving as the environment for developing and validating the 

proposed Model Predictive Contouring Control (MPCC) framework (described in D4.2 

[11] in detail) in combination with using high-fidelity simulations like IPG CarMaker 

integrated with the Delft-Tyre model. This flexible approach allows for the exploration 

and validation of different control strategies while isolating potential inaccuracies 

from other aspects of the automated driving pipeline. The iterative evaluation process 
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ensures rigorous validation before integration into more complex system 

environments. Additionally, MATLAB’s capabilities for generating C++ code streamline 

the transition from simulation to real-world testing, reducing potential 

implementation errors and enhancing efficiency. Figure 25 illustrates a simulated 

scenario within IPG CarMaker and Simulink, demonstrating the controller's ability to 

successfully avoid two obstacles while operating at the limit of handling. 

 

Figure 25 An instant of the obstacle avoidance manoeuvre. 

Under normal operating conditions, the proposed MPCC [44], [45] tracks the planned 

trajectory generated by the motion planner when the vehicle is safely distanced from 

obstacles. The primary goal is smooth, precise path tracking that follows the planned 

route closely, leveraging MPCC’s predictive capabilities to minim ize deviations and 

optimize vehicle dynamics by considering coupled lateral and longitudinal dynamics. 

This predictive approach significantly enhances real-time response and path accuracy. 

As scenario complexity increases, such as when the planned trajectory brings the 

vehicle close to obstacles or when motion plans become infeasible due to 

oversimplified predictive models, the MPCC’s dynamic capabilities become critical. In 

such cases, it activates a dynamic motion replanning process to ensure obstacle 

avoidance while maintaining stability and safety. Real-time trajectory adjustments 

allow the vehicle to navigate unexpected challenges, such as sudden changes in road 

friction or hazardous conditions, without compromising control and stability. This 

adaptability is essential for managing nonlinearities inherent in tyre-road interactions, 

especially in constrained friction environments. 

3.6.2 Step-by-Step Integration Process 

This subsection outlines the procedures to integrate EXP8 into the simulation 

environment: 
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1. Implementation of the High-Fidelity Model. The initial step involved 

incorporating a high-fidelity vehicle model within the IPG CarMaker simulation 

environment. Specific tuning of the Delft-Tyre model’s scaling factor was 

performed to accurately capture the reduced friction conditions and dynamic 

changes associated with heavy rain, reflecting the unique characteristics of 

EXP8. Figure 26 shows how the IPG CarMaker is incorporated into Simulink. 

 

Figure 26 IPG CarMaker integration into Matlab/Simulink. 

2. Inclusion of Brake and Steering Dynamics Delays. Brake and steering 

dynamics delays were incorporated into the high-fidelity model to realistically 

represent response lags inherent in automotive systems. This adjustment was 

crucial for developing and testing control algorithms on a more accurate 

simulation basis. 

3. Implementation of the Controller in ForcesPro. The proposed Model 

Predictive Contouring Control framework was implemented using ForcesPro, 

an advanced optimization software for high-speed, nonlinear problems [43]. 

Figure 27 illustrates the integration of ForcesPro within the Simulink simulation 

architecture. 

4. Validation of the Prediction Model. The prediction model was validated by 

comparing its performance against the high-fidelity model within the 

simulation environment. This allowed for fine-tuning to ensure that the 

prediction model accurately mirrored vehicle behaviour under challenging 

conditions. 
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Figure 27 Simulation architecture in Matlab/Simulink. 

5.  Scenario Generation for Experiment 8. A challenging test scenario was 

generated for Experiment 8, placing obstacles strategically to push the 

controller to the limit of handling. This scenario evaluated the controller’s 

performance in critical situations. 

3.6.3 Key Challenges and Solutions 

Iterative testing and refinement of the controller were conducted to enhance 

performance and robustness across different conditions. The results, presented in 

Figure 28 and Figure 29, demonstrate the effectiveness of the proposed controller 

using the wet tire parameterization. This approach successfully avoids both obstacles, 

whereas the baseline controller (shown in red) fails to avoid the second obstacle, 

resulting in a collision. 

 

Figure 28 Vehicle trajectories, with the baseline approach represented in red, which results in 
a collision, and the proposed approach depicted in blue, successfully avoiding the obstacles . 
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Figure 29 The control inputs, specifically the commanded longitudinal force (left) and the 

road wheel angle (right). 
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 Conclusions 
The EVENTS project successfully integrated automated driving components into 

virtual environments, addressing a wide range of automated driving scenarios, 

including urban navigation, highway manoeuvres, interactions with vulnerable road 

users (VRUs), and adverse weather conditions. Through a systematic approach 

emphasizing modularity, scalability, and consistency, the project ensured effective 

testing and evaluation of perception, control, and decision-making systems. This work 

provides a robust basis for hybrid and real-world testing in subsequent phases of the 

project. 

A critical achievement of the project was the ability to replicate real-world challenges 

within virtual environments, including dynamic multi-agent interactions, VRU-focused 

scenarios, sensor integration, and complex decision-making processes. For instance, 

VRU-focused experiments in urban environments tested motion planning systems to 

safely navigate around pedestrians. These environments enabled the integration of 

advanced perception technologies, such as LiDAR- and radar-based detection, 

alongside control and decision-making strategies, including model predictive control 

and machine learning-based approaches. 

The developments carried out in WP3 (Perception and V2X Communication) and WP4 

(Decision-Making and Control) were progressively integrated into the virtual 

environments in parallel to their development. This approach created an iterative 

testing loop, where components were evaluated and refined continuously as new 

functionalities emerged. By enabling early integration and testing, the project 

accelerated the development cycle and ensured that modules were compatible and 

robust before deployment. Ultimately, this process culminated in setting up the final 

virtual environments, which now serve as a foundation for hybrid and real-world 

integration in subsequent tasks. 

The use of containerization technologies significantly enhanced the scalability and 

efficiency of the integration process. Multi-agent systems, which required parallel 

execution of processes like perception, control, and communication, benefited from 

containerization’s ability to streamline deployment, ensure process isolation, and 

simplify troubleshooting. Performance monitoring and automated health-check 

mechanisms further ensured reliable execution of complex systems, enabling 

consistent and repeatable testing across diverse scenarios. 

Machine learning technologies played a pivotal role in tasks such as prediction and 

decision-making, particularly in dynamic highway environments. Virtual frameworks 

provided structured testing grounds for evaluating reactive systems under conditions 

like cut-ins, merges, and other critical interactions. High-fidelity modeling further 
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enabled precise evaluations of control strategies under challenging conditions, such 

as nonlinear tire-road interactions on slippery roads. 

The combination of open-source frameworks, commercial tools, and tailored virtual 

environments allowed the project to address diverse experiment requirements 

effectively. Urban navigation scenarios involving VRUs required configurable 

environments capable of replicating realistic sensor inputs and dynamic interactions. 

Meanwhile, experiments focusing on control strategies under adverse weather relied 

on detailed physical models to simulate road conditions with high accuracy. Tailored 

virtual environments complemented these tools by addressing unique challenges, 

such as integrating self-assessment modules or enabling radar-based perception 

systems. 

In conclusion, the EVENTS project demonstrated the critical role of simulation 

technologies in integrating and testing automated driving components across a variety 

of scenarios. The progressive integration of WP3 and WP4 developments, combined 

with iterative testing loops, ensured that perception, control, and decision-making 

systems were evaluated and refined efficiently throughout the project. This process 

culminated in the creation of robust virtual environments, providing a strong 

foundation for hybrid and real-world testing. By replicating complex real-world 

challenges, including VRU interactions, multi-agent coordination, and control under 

adverse conditions, the project offers valuable insights for advancing automated 

driving technologies. Virtual environments remain a vital enabler for safe, cost-

effective, and repeatable testing, bridging the gap toward real-world deployment in 

subsequent phases of the project. 
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