

This project has received funding under grant agreement No 101069614. It is funded

by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or
European Commission. Neither the European Union nor the granting authority can

be held responsible for them.

ReliablE in-Vehicle pErception and decisioN-making in

complex environmenTal conditionS

Grant Agreement Number: 101069614

Document Identification

Status Final Due Date 31/10/2024

Version 1.0 Submission Date 23/12/2024

Related WP WP5 Document Reference D5.1

Related

Deliverable(s)

-- Dissemination Level PU

Lead Participant TECN Document Type: Other

Contributors All WP5 partners Lead Authors Leonardo Gonzalez (TECN)

 Reviewers Michael Buchholz (UULM)

Jerome Vermersch (APTIV)

D5.1 System integration in the virtual

testing setup

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 2 of 64

Document Information

Author(s)

First Name Last Name Partner

Peter Jasinski APTIV

Anastasia Bolovinou ICCS

Emmanouil Gkigkilinis ICCS

Javier Araluce TECN

Leonardo Gonzalez TECN

Barys Shyrokau TUD

Thomas Griebel UULM

Document History

Version Date Modified by Modification reason

0.1 04/09/2024 TECN Empty document with section structure

0.2 28/11/2024 UULM, TECN, TUD,

ICCS, APTIV

First input by partners

0.3 04/12/2024 TECN Complete first draft of deliverable with

all sections

0.4 11/12/2024 TECN Internal review by TECN

0.5 16/12/2024 APTIV, ICCS, UULM Second input by partners

0.6 16/12/2024 TECN Integrating all corrections, first version

ready for peer review

0.7 17/12/2024 UULM Review received from UULM

0.8 18/12/2024 APTIV Review received from APTIV

0.9 19/12/2024 TECN Integration and final corrections

1.0 20/12/2024 ICCS Final review ready for submission

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Leonardo Gonzalez (TECN) 19/12/2024

Quality manager Panagiotis Lytrivis (ICCS) 20/12/2024

Project Coordinator Angelos Amditis (ICCS) 20/12/2024

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 3 of 64

Executive Summary
This document presents the outcomes of Task T5.1 within Work Package 5 (WP5) of the

EVENTS project, focusing on integrating automated driving components into virtual

environments. The task addressed diverse scenarios, including urban navigation, highway

manoeuvres, vulnerable road user (VRU) interactions, and adverse weather conditions. High-

fidelity simulation technologies—open-source, commercial, and tailored solutions—were

leveraged to replicate real-world complexities and test developments from WP3 (Perception

and V2X Communication) and WP4 (Decision-Making and Control). Progressive integration

enabled iterative testing loops, ensuring continuous evaluation and refinement of perception

systems, control strategies, and decision-making algorithms. Special attention was given to

challenges like multi-agent coordination, VRU safety, and dynamic obstacle avoidance

through technologies such as model predictive control, machine learning-based prediction,

and sensor integration. The virtual environments established in T5.1 provide a scalable, safe,

and cost-effective testing foundation, supporting hybrid testing and real-world deployment in

the next phases of WP5 and advancing autonomous driving system capabilities.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 4 of 64

Table of Contents

Executive Summary ... 3

1. Introduction .. 9

1.1 Project aim .. 9

1.2 Report scope ... 9

1.3 Structure of the report ... 10

2. Overall integration Process .. 11

2.1 Simulation Environments ... 12

2.2 Key Differences and Suitability for Automated Driving 13

2.3 List of Experiment Videos ... 15

3. Integration in simulation environments.. 16

3.1 Experiment 1 ... 16

3.1.1 Architecture and Design Considerations .. 16

3.1.2 Step-by-Step Integration Process... 17

3.1.3 Key Challenges and Solutions .. 18

3.2 Experiment 2 ... 24

3.2.1 Architecture and Design Considerations .. 24

3.2.2 Step-by-Step Integration Process... 29

3.2.3 Key Challenges and Solutions .. 38

3.3 Experiment 3 ... 40

3.3.1 Architecture and Design Considerations .. 40

3.3.2 Step-by-Step Integration Process... 42

3.3.3 Key Challenges and Solutions .. 43

3.4 Experiment 6 ... 44

3.4.1 Architecture and Design Considerations .. 44

3.4.2 Step-by-Step Integration Process... 46

3.4.3 Key Challanges and Solutions .. 48

3.5 Experiment 7 ... 49

3.5.1 Architecture and Design Considerations .. 49

3.5.2 Step-by-Step Integration Process... 51

3.5.3 Key Challenges and Solutions .. 52

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 5 of 64

3.6 Experiment 8 ... 53

3.6.1 Architecture and Design Considerations .. 53

3.6.2 Step-by-Step Integration Process... 55

3.6.3 Key Challenges and Solutions .. 57

4. Conclusions ... 59

References ... 61

List of Tables

Table 1 Key components and tools per experiment... 13

Table 2 List of videos per experiment... 15

Table 3 Scenario with randomly spawned pedestrians over 25 experiments....................... 21

List of Figures

Figure 1 Simulation results for Autoware planner. .. 20

Figure 2 Simulation results for Local Model Predictive Control. ... 20

Figure 3 Simulation results for Topology-Driven MPC with fallback strategy 21

Figure 4 Trajectories of the four methods in one case with two pedestrians....................... 22

Figure 5 Velocity profile of the four methods for the same scenario. 23

Figure 6 Simulated custom map of Tecnalia’s test track. ... 26

Figure 7 Tecnalia’s Facilities... 27

Figure 8 Nvidia docker container toolkit. [21] ... 28

Figure 9 Experiment 2 architecture. ... 30

Figure 10: One vehicle control ROS architecture. .. 32

Figure 11: health check of a node. ... 34

Figure 12: Portainer architecture for one vehicle. ... 35

Figure 13 CARLA environment bird-eye-view snapshot. .. 36

Figure 14 Virtual testing pipeline a) offline and b) online testing modes............................. 36

Figure 15: Overall architecture of EXP3 modified from D2.2 [37]. 40

Figure 16: Simulation environment for Experiment 3 based on a software-in-the-loop

framework [7]. ... 42

Figure 17 EXP6 Scenario definition... 44

Figure 18 Initial Virtual Simulation System architecture .. 44

Figure 19 Integration of over-drivable OSI objects .. 45

Figure 20 Final integration architecture.. 46

Figure 21 Example of implemented debris objects .. 47

Figure 22 Virtual training Setup of Joint Prediction and Planning system 50

Figure 23 NuPlan Framework High-Level software description where green color denotes

modules that had to be adapted by ICCS. ... 51

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 6 of 64

Figure 24 Collision avoidance scenario with two obstacles. ... 53

Figure 25 An instant of the obstacle avoidance manoeuvre. .. 55

Figure 26 IPG CarMaker integration into Matlab/Simulink... 56

Figure 27 Simulation architecture in Matlab/Simulink. .. 57

Figure 28 Vehicle trajectories, with the baseline approach represented in red, which results

in a collision, and the proposed approach depicted in blue, successfully avoiding the

obstacles. ... 57

Figure 29 The control inputs, specifically the commanded longitudinal force (left) and the

road wheel angle (right). ... 58

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 7 of 64

Abbreviations & Acronyms

Abbreviation / acronym Description

ACC Adaptive Cruise Control

AD(F) Autonomous Driving (Function)

AI Artificial Intelligence

AL Alert Limit

API Application Programming Interface

AV Automated Vehicle

BP Behavioural Planner

CA Consortium Agreement

CAM Cooperative Awareness Message

CAV Connected Automated Vehicle

CPM Collective Perception Messages

DDT Dynamic Driving Task

DENM Decentralized Environmental Notification Message

DM Decision Making

EC European Commission

EXPs Experiments

FIS Fuzzy Inference System

FoV Field of View

FTP Fail-degraded Trajectory Planning

GA Grant Agreement

IR Integrity Risk

ISO International Organization for Standardization

I/O Input(s) / Output(s)

LiDAR Light Detection and Ranging

MDP Markov Decision Process

MPC Model Predictive Control

MRM Minimum Risk Manoeuvre

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 8 of 64

Abbreviation / acronym Description

MOP Moving Object Prediction

MOT Multi-Object Tracking

ODD Operational Design Domain

OSI Open Simulation Interface

PE Position Error

PL Protection Level

PP Perception Platform

RADAR RAdio Detecting And Ranging

REQs Requirements

RL Reinforcement Learning

SAE Society of Automotive Engineers

SMD Safety-mode Decision

SoTA State of the art

SPaT message Signal Phase and Timing message

SPECs Specifications

TOR Take Over Request

TP Trajectory Planner

TSs Target Scenarios

UCs Use Cases

VRU Vulnerable Road User

WP Work Package

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 9 of 64

 Introduction
This document follows the structure of all the other deliverables, namely, an

introduction with the aims of project and scope of the document; after that, the

main text, with the specific topic of the document.

1.1 Project aim

Driving is a challenging task. In our everyday life as drivers, we are facing unexpected

situations we need to handle in a safe and efficient way. The same is valid for

Connected and Automated Vehicles (CAVs), which also need to handle these

situations, to a certain extent, depending on their automation level. The higher the

automation level is, the higher the expectations for the system to cope with these

situations are.

In the context of this project, these unexpected situations, where the normal

operation of the CAV is close to be disrupted (e.g., ODD limit is reached due to traffic

changes, harsh weather/light conditions, imperfect data, sensor/communication

failures, etc.), are called “events”. EVENTS is also the acronym of this project.

Today, CAVs are facing several challenges (e.g., perception in complex urban

environments, Vulnerable Road Users (VRUs) detection, perception in adverse

weather and low visibility conditions) that should be overcome to be able to drive

through these events in a safe and reliable way.

Within our scope and to cover a wide area of scenarios, these kinds of events are

clustered under three main use cases: a) Interaction with VRUs, b) Non-Standard and

Unstructured Road Conditions and c) Low Visibility and Adverse Weather Conditions.

Our vision in EVENTS is to create a robust and self-resilient perception and decision-

making system for AVs to manage different kind of “events” on the horizon. These

events result in reaching the CAV ODD limitations due to the dynamic changing road

environment (VRUs, obstacles) and/or due to imperfect data (e.g., sensor and

communication failures). The CAV should continue and operate safely no matter what.

When the system cannot handle the situation, an improved minimum risk manoeuvre

should be put in place.

1.2 Report scope

This report focuses on the outcomes of Task T5.1 SW integration in simulation

environments, within the EVENTS project. Task T5.1 addresses the integration of

perception, decision-making, and control components developed in previous work

packages, into virtual environments to evaluate their performance under diverse and

challenging scenarios. These scenarios include interactions with Vulnerable Road

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 10 of 64

Users (VRUs), non-standard and unstructured road conditions, and adverse weather

or low-visibility conditions.

The work presented in this document highlights the progressive integration of

developments from WP3 (Perception and V2X Communication) and WP4 (Decision-

Making and Control) for each of the experiments in the project [1] . The virtual

environments used encompass open-source, commercial, and tailored solutions,

which provide controlled and scalable testing grounds for automated driving systems.

The report also identifies the key challenges addressed during the integration process

and the role of virtual environments in preparing for subsequent hybrid and real-world

testing phases.

This document excludes detailed analysis of hybrid environments and real-world

testing tasks, as these are covered under separate future deliverable D5.2 System

integration in the prototype vehicles. Additionally, experiments focused solely on

hybrid or real-world scenarios, such as EXP4 and EXP5, are not included within the

scope of this report.

1.3 Structure of the report

The document is structured as follows:

• Section 1: Introduction provides an overview of the project aims, the scope of

this report, and its structure.

• Section 2: Overall Integration Process summarizes the systematic approach

taken to integrate automated driving components into virtual environments.

This section also introduces the simulation technologies used and their

relevance to the experiments.

• Section 3: Integration in Simulation Environments presents the detailed

integration process for each experiment in scope (EXP1, EXP2, EXP3, EXP6,

EXP7, and EXP8). Each subsection describes the design considerations, step-

by-step integration processes, challenges encountered, and key outcomes.

• Section 4: Conclusions summarizes the achievements of Task T5.1,

emphasizing the role of virtual environments in supporting the development

and evaluation of automated driving systems.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 11 of 64

 Overall integration Process
The overall integration process describes the systematic approach adopted for

integrating automated driving components into virtual environments across all

experiments involved in the project. The objective was to ensure consistency,

modularity, and scalability, enabling a robust framework for testing advanced

perception, control, and decision-making systems. By leveraging established

simulation platforms such as CARLA and IPG CarMaker, alongside tailored in-house

solutions like those used by Ulm University in EXP3 and APTIV in EXP6, virtual

environments were developed to meet each experiment’s specific objectives. This

integration work provides a critical foundation for subsequent real-world

deployments and hybrid testing to be reported in D5.2 System integration in the

prototype vehicles.

The integration process encompassed the following key aspects:

1. Virtual Simulation Frameworks: High-fidelity simulation platforms were

utilized to model diverse and challenging driving scenarios. Tools such as

CARLA, IPG CarMaker, and Autoware enabled the replication of urban

navigation, highway maneuvers, and adverse weather conditions. Scenario-

specific solutions, like Ulm University’s internal simulation setup for EXP3,

allowed for focused and flexible integration tailored to the experiment needs.

2. Scalability and Containerization: Modular architectures based on Docker were

implemented in experiments such as EXP2 and EXP7. These setups provided

scalability for running multi-agent and multi-sensor systems in parallel while

supporting hybrid virtual-physical environments. By isolating components

such as V2X modules, tracking systems, and motion planners into separate

containers, experiments ensured efficient deployment, parallel execution, and

streamlined troubleshooting.

3. Integration of Machine Learning and Optimization : Machine learning

components and optimization tools from WP3 and WP4 were integrated to

enable advanced perception and decision-making functionalities. For example,

ML-based predictive models were incorporated in EXP7 for highway joint

prediction and planning tasks using PyTorch, while real-time optimization of

controllers was achieved in EXP8 using ForcesPro for nonlinear MPC. These

integrations supported the development of efficient and reliable control

strategies in simulated environments.

4. Performance Monitoring and Health Checks: Automated performance

monitoring and health checks were implemented in experiments such as EXP2

to manage the execution of complex multi-agent systems. Metrics such as task

duration, collision events, and computation times were logged to assess the

system’s behavior within the virtual environments. Tools like ROS2 and

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 12 of 64

Scenario Runner provided interfaces for automating and monitoring

simulation performance.

5. Real-World Compatibility Focus: Experiments were designed with an

emphasis on integration into virtual environments while maintaining outputs

compatible with real-world systems. For instance, real sensor models (LiDAR,

radar, cameras) and standardized message formats such as collective

perception messages (CPMs) were integrated into simulations. Platforms like

the CARLA-ROS bridge ensured seamless data exchange between virtual

agents and real-world components, facilitating hybrid testing planned in T5.2.

The integration work achieved in this task (T5.1) ensures that components developed

in WP3 (Perception and V2X Communication) and WP4 (Decision-Making and Control)

were successfully implemented in virtual environments. By adopting standardized

simulation frameworks, scalable architectures, and modularized designs, the project

delivered robust experimental setups across multiple use cases. These virtual

environments are a crucial step towards enabling comprehensive hybrid and real-

world testing in subsequent project tasks.

2.1 Simulation Environments

The simulation environments used in the EVENTS project played a key role in ensuring

consistent and reliable integration of automated driving components. Each

environment was carefully selected or tailored to match the requirements of specific

experiments, tooling varied for each experiments, ranging from full on frameworks for

automated driving like Autoware, to automated driving simulators, such as CARLA.

1. Autoware [2]: Used in EXP1, Autoware provides a modular open-source

software stack based on the ROS2 environment. It allows a seamless

integration of motion planning and perception components in urban driving

environments.

2. CARLA [3]: Used in EXP2, provided a highly configurable and realistic

simulation platform for testing urban navigation, and perception systems. Its

ability to generate dynamic traffic scenarios and integrate with ROS2 made it

ideal for multi-agent and V2X applications.

3. IPG CarMaker [4]: used in EXP8, due to its high-fidelity vehicle dynamics

environment which made it suitable for the research work performed on

nonlinear control tasks like collision avoidance on slippery roads. The

combination of advanced tire models and real-time simulation made it the

simulator chosen for testing vehicle control strategies under adverse

conditions.

4. Nuplan simulator [5]: To be used in EXP7, for conducting closed loop (re-active

agents) simulations in urban and highway driving scenarios with ML-powered

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 13 of 64

ego and non-ego driving models with predictive and planning

capabilitites.Note: This is a new tool to be adopted by ICCS team for

ongoing/future work that was taken over in the context of WP4 based on the

second project amendement (approval is pending at the time of writing).

5. dSPACE ASM [6]: Used in EXP6, because it provides the environment

simulation model, which includes the streets, weather conditions and vehicle

dynamics of the host vehicle. Furthermore it provides the OSI groundtruth data

which is used as input for the APTIV RADAR Sensor Model.

6. In-House Solutions [7]: Ulm University deployed a tailored simulation

environment for EXP3 to integrate modules such as self-assessment systems

and V2X.

The Table 1 below summarizes the key components and tools integrated within each

experiment:

Experiment Perception Control Decision-

Making

Virtual

Environment

Tools

EXP1 VRU detection Topology-

Driven MPC
(T-MPC++)

Urban

Navigation
Planning

Autoware [2],

ROS2 [8]

EXP2 V2X Perception
(CPMs) and self-

asssesment

Platooning
Control

Coordinated
Roundabout

Navigation

CARLA [3],
ROS2 [8],

Autoware [2]
EXP3 Self-

Assessment,
V2X Fusion

- Behavioral

Decision-
Making

In-house

simulator [7]

EXP6 Radar Sensor

Models for small
objects

- - dSPACE ASM [6]

EXP7 ML-Based
Prediction

Joint
Prediction

and Planning

Highway
Behavioral

Planning

nuPlan
Simulator [5]

EXP8 Obstacle

detection on
adverse

weather

Nonlinear

MPC, Delft
Tyre model

Collision

Avoidance in
adverse

weather

IPG CarMaker

[4]

Table 1 Key components and tools per experiment

2.2 Key Differences and Suitability for Automated Driving

The selection of virtual environments in the EVENTS project addressed a variety of

automated driving scenarios, including urban navigation, highway maneuvers, and

adverse weather conditions. Each platform offered unique advantages aligned with

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 14 of 64

the specific needs of the experiments, ensuring the successful integration of

perception, control, and decision-making components.

CARLA was used for its flexibility and configurability in urban driving environments. Its

support for sensor models such as LiDAR and cameras, combined with integration with

ROS2, alongside the benefits of being open-source with an active community, made it

ideal for integrating perception developments. In EXP2, CARLA enabled the simulation

of coordinated platooning in a roundabout, supporting V2X-based communication and

vehicle control. Other virtual environments were also leveraged, specifically “at-

home” developments such as Ulm University’s simulation platform in EXP3. This

environment was used to integrate self-assessment modules and V2X-based collective

perception systems, focusing on improving perception reliability. Similarly, APTIV’s

radar-centric virtual environment in EXP6 allowed precise radar perception testing

with targeted capabilities for radar-focused applications.

The commercial tool IPG CarMaker was used in EXP8 for its high-fidelity vehicle

dynamics modeling, particularly for scenarios requiring precise simulation of nonlinear

tire-road interactions. The platform’s advanced tire models and ability to represent

real-world vehicle dynamics made it suitable for testing control strategies under

adverse conditions, such as reduced road friction. This, alongside integration with the

ForcesPro solver, allowed real-time optimization of nonlinear MPC algorithms,

enabling accurate simulations of evasive maneuvers on slippery roads caused by

heavy rainfall.

Autoware, an open-source framework for automated driving, was also leveraged.

Employed in EXP1, it served as a modular simulation platform specifically for urban

navigation and motion planning. It provided a complete software stack integrating

perception, decision-making, and control components. Its modular design allowed for

the exchange of project-specific developments while maintaining a consistent base

architecture. Autoware’s compatibility with HD maps and simplified vehicle dynamics

models made it suitable for replicating real-world urban environments, ensuring

consistency in testing motion planners and perception pipelines.

The combination of platforms such as CARLA, IPG CarMaker, and Autoware, along with

tailored virtual environments and benchmarks like nuPlan, ensured comprehensive

coverage of the project’s technical requirements. This integration provided a robust

foundation for testing automated driving components in virtual environments,

supporting the transition to hybrid and real-world testing in subsequent project tasks.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 15 of 64

2.3 List of Experiment Videos

The following table summarizes the video links for all experiments conducted in T5.1,

showcasing the integration of automated driving components in virtual environments.

While it is not necessary, not we as a consortium are obliged per the Grant Agreement,

to provide demonstration videos of the software integration in the simulations

environments, we have deemed it both useful and illustrative to provide such videos

on certain experiments. It was not though feasible to provide a video for each of the

experiments, either due to technical or proprietary reasons. The latter reason is even

more valid since this deliverable is a public document.

Experiment Description Video Link

EXP1 Interaction with VRUs in complex

urban environment
EXP1 Video

EXP2 Re-establish platoon formation

after splitting due to roundabout
platooning in a roundabout

EXP2 Video

EXP3 Self-assessment and reliability of
perception data with
complementary V2X data in

complex urban environments

EXP3 Video

EXP8 Driving minor road under adverse

weather conditions including
perception self-assessment

EXP8 Video

Table 2 List of videos per experiment

https://doi.org/10.5281/zenodo.14535354
https://doi.org/10.5281/zenodo.14535412
https://doi.org/10.5281/zenodo.14535447
https://doi.org/10.5281/zenodo.14535460

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 16 of 64

 Integration in simulation environments
This section describes the integration of automated driving components into virtual

environments for each experiment conducted in Task T5.1. The experiments address

diverse scenarios, including urban navigation, highway maneuvers, vulnerable road

user (VRU) interactions, and control strategies under adverse weather conditions.

Each experiment leverages specific virtual environments, either open-source,

commercial, or tailored, to test and refine the developments from WP3 and WP4 in a

controlled, repeatable manner.

It is important to note that EXP4 and EXP5 are planned for hybrid environments and

rely on real-world data, which falls outside the scope of the virtual environment

integration focus of Task T5.1. Thus, this chapter focusses on the remaining

experiments.

3.1 Experiment 1

The motion planner developed in this experiment is designed to navigate urban

environments while accounting for the presence of Vulnerable Road Users (VRUs). The

following section outlines the virtual test environment used to evaluate the

performance of the planner against several baseline approaches in scenarios involving

pedestrian interactions.

3.1.1 Architecture and Design Considerations

The key requirement for the simulation of EXP1 is to minimize the gap from simulation

to reality and to assess the motion planner with decision-making in real-time. The

developed approach is integrated with Autoware software [9]. The Autoware software

provides a baseline planner and can incorporate the real-world environment, for this

reason, the Autoware Planning Simulation has been used. We adapted this simulation

environment to match as closely as possible the real-world experimental settings,

using our own HD map collected on the real test track and adapted vehicle parameters

to match those of the used test vehicle.

With the developed approach integrated in Autoware, our software is compatible with

the existing sensing, perception and control pipelines available in Autoware.

The simulation environment is defined as an urban environment consisting of a two-

lane road without clear lanes, and where pedestrians are frequently crossing. In this

setting, the developed motion planner with decision-making needs to drive safely but

assertively to progress along the road as a human would do when driving in such an

environment.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 17 of 64

3.1.2 Step-by-Step Integration Process

As mentioned previously, our simulation environment builds on top of the Autoware

Planning Simulation. We first adapted the simulation to our real-world environment

as follows:

• Vehicle: The vehicle model parameters are configured to match the TUD test

platform based on the Toyota Prius. The dynamics are simplified but already model

delays and dynamic limits on velocity, acceleration, etc.

• Map: The HD map of our real-world test location is loaded into the simulation. This

provides LaneLet [2] annotations describing the road centreline and boundaries.

By using this map, our simulation environment closely matches the real-world

environment.

• Objects: Autoware provides functionality to spawn dummy pedestrians, including

a point cloud and camera images that can be detected by the perception pipeline.

Spawning functionality is limited, however, for automated testing.

Beyond configuring the basic Autoware simulation environment with our scenario, we

further improved the environment with more realistic pedestrian behaviour:

• Timing: We implemented a GPS triggered gate that starts pedestrian motion when

the vehicle drives through. This enables us to start virtual pedestrians with the

same timing in the simulation as in the real-world.

• Pedestrians: Our pedestrian simulation was enhanced with several features.

o Output: Pedestrians are simulated in a separate simulator. The output of

the simulator is converted to Autoware dummies to simulate point clouds

and the interaction of the perception stack with the planner.

o Model: Pedestrians use the social forces model [10]. This model has

interaction, causing pedestrians to evade each other when they are close

together, resulting in more realistic pedestrian motion.

o Uncertainty: We simulate a Gaussian noise distribution on top of the social

forces model to simulate the uncertainty associated with the uncertain,

non-deterministic motion of pedestrians.

o Randomized Scenarios: We spawn pedestrians in a random area

annotated on top of the HD map. Pedestrian spawn and goal locations are

different for each scenario but consistent between the different planning

methods.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 18 of 64

• Automated Testing: The simulation environment is extended for automated

testing. First, the vehicle is spawned in a start location on the HD map. Second, a

goal position is passed along the road and the motion planner with decision-

making is activated. When the goal is reached, data relating to the experiment is

saved, and the vehicle is respawned at the start location. Simulations are repeated

up to a configured number.

• Analysis: Each simulation generates a file with metrics, including:

o Task duration, s

o Collisions (if any), [-]

o Timeouts (when the vehicle did not reach the goal), [-]

o Average velocity [m/s]

o Minimum distance to pedestrians, m

o Computation time, s

o Positions of the vehicle and objects, m

Replacing and adapting the Autoware component

Since our proposed motion planner with decision-making replaces the Autoware

planning component, we adapted the sensor and actuator ROS2 topics to receive and

send data to the software stack. On the output side, the Autoware control component

expects a trajectory with a history to ensure the smoothness of the vehicle’s

behaviour. The code for maintaining the history was adapted from the Autoware

planning stack leading to smooth planning in simulation.

A major adaptation was made to convert the route planned by Autoware to the format

of the developed motion planner with decision-making. The route consists of a

sequence of lanelets including their boundaries. Specialized software was developed

to model the road centreline and its boundaries as continuous cubic splines that can

be handled by the Model Predictive Controller (MPC) described in D4.2 [11]in detail.

3.1.3 Key Challenges and Solutions

The following describes the virtual tests of our developed motion planner with

decision-making compared to existing baselines.

Baselines

We used two primary baselines. The first baseline is the Autoware standard planner,

tuned and configured to enable dynamic collision avoidance. This stack relies on

several components:

• First, the dynamic collision avoidance component in the behavioural planner

[12] implements rule-based dynamic collision avoidance. It projects laterally

the motion plan away from a collision point, steering to avoid a collision. This

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 19 of 64

planner has a known limitation that it can only steer a limited amount to avoid

pedestrians and is not incorporated by default in the Autoware software stack.

• If the avoidance planner cannot evade pedestrians, a braking component takes

over control. This module simply waits for the pedestrians to pass before

continuing to drive. The two behavioural planner components can conflict and

lead to collisions.

• The plan of the behavioural layer, which may or may not be avoiding collisions,

is passed to a motion planning component that refines the plan. In particular,

it uses a convex MPC with collision avoidance constraints to satisfy the vehicle

dynamic constraints.

The Autoware planner is known to be conservative and is not designed to deal with

multiple dynamic obstacles but is available open source.

The second baseline is Local Model Predictive Contouring Control (LMPCC) [13].

LMPCC uses MPC to optimize a single trajectory. It was introduced to navigate around

static and dynamic obstacles. The objectives and constraints are equal to those of our

proposed planner.

Simulation results

We compare these two baselines against two variants of our proposed algorithm

Topology-Driven MPC (T-MPC++):

• T-MPC++, optimizes multiple distinct trajectories in parallel.

• Fallback-enhanced T-MPC++, also optimizes trajectories that do not pass

obstacles to have a safe fallback option available.

All MPC-based planners use the same cost and safety constraints. T-MPC++ adds

constraints to maintain the passing behaviour of trajectories locally.

The simulated environment considers scenarios with 0, 2 and 4 pedestrians to

compare how safe and efficient the planners are when evading dynamic objects.

Simulations were run on a laptop with an Intel i9 CPU @ 2.4 GHz 16-core CPU. The

snapshots of the baselines and the proposed approach in the simulation are shown in

Figure 1, Figure 2 and Figure 3. Figure 1 is related to Autoware planner using the

dynamic collision avoidance and obstacle stop planner. The plan shown with green

(fast) – blue (slow) colours plans to steer and brake to pass the obstacles. Figure 2

demonstrates the simulation results for Local Model Predictive Control optimizing a

single trajectory. In this case, the planned trajectory got stuck in poor behaviour,

failing to pass the obstacles efficiently. Figure 3 shows the results for Topology-Driven

MPC with fallback strategy optimizes several trajectories in distinct passing behaviors

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 20 of 64

(visualized with light green, dark blue and red lines). Even in crowded environments,

the planner finds high-quality trajectories.

Figure 1 Simulation results for Autoware planner.

Figure 2 Simulation results for Local Model Predictive Control.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 21 of 64

Figure 3 Simulation results for Topology-Driven MPC with fallback strategy

Pedestrians Method Duration[s] Collisions Timeouts Avg. Velocity

[m/s]

0 Autoware 19.5 (0.1) 0 0 1.87

T-MPC++ 19.4 (0.3) 0 0 1.86

2 Autoware 26.0 (6.0) 4 0 1.45

LMPCC 20.9 (1.4) 1 0 1.75

T-MPC++ (w/o fallback) 21.0 (1.1) 1 0 1.74

T-MPC++ 20.1 (1.2) 1 0 1.83

4 Autoware 28.4 (4.4) 5 0 1.31

LMPCC 24.0 (3.2) 0 0 1.57

T-MPC++ (w/o fallback) 24.2 (4.8) 3 1 1.56

T-MPC++ 21.0 (1.7) 0 0 1.78

Table 3 Scenario with randomly spawned pedestrians over 25 experiments.

The quantitative results are summarised in Table 3. The following key performance

indicators are reported: task duration [mean (std)], collisions, timeouts (vehicle did

not reach the goal in time) and average velocity. The developed algorithm T-MPC++,

with a fallback strategy, outperforms the other methods in task duration without

compromising on safety.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 22 of 64

The Autoware baseline is the slowest planner and often collides. Autoware’s collision

avoidance planner is experimental and does not guarantee collision avoidance.

Furthermore, two motion plans in Autoware (collision avoidance and braking) are

operated concurrently. When the collision avoidance module cannot guarantee

overtaking of the obstacle, the braking planner is activated too late, leading to a

collision. LMPCC (i.e., single trajectory MPC) performs better, it does not have

collisions and is driving faster on average. Performance is still suboptimal, as it

optimizes a single trajectory that may be far from the globally optimal solution. This is

clear from the results of T-MPC++, particularly looking at the increase in task duration

with an increasing number of obstacles. With two obstacles, LMPCC takes 1.6s longer,

while T-MPC++ takes only 0.4s longer. T-MPC++, therefore, passes the obstacles more

efficiently. Without fallback, the planner has to take emergency action (i.e., perform

hard braking) when the nominal planner fails. With fallback, an alternative is available

that may not require heavy braking and, as a result, can result in faster navigation.

Trajectories of the four methods in one scenario with two pedestrians are shown in

Figure 4 . Trajectories of the ego-vehicle and obstacles are shown in red and green,

respectively, with increased transparency over time. The Autoware planner brakes for

the obstacles, notice that it does not steer and stays stationary. LMPCC finds a poor local

optimum and also does not steer to pass the pedestrians. T-MPC++ does steer to evade

the pedestrians from behind, completing the task faster (visible in the less transparent

trajectory around x=20). T-MPC++ with fallback strategy performs the same manoeuvre,

but its safety is improved (demonstrated by less collisions in Table 3).

Autoware LMPCC

T-MPC T-MPC with fallback

Figure 4 Trajectories of the four methods in one case with two pedestrians.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 23 of 64

Further comparison of the methods is provided Figure 5, where the velocity profiles

planned by the methods are compared for the same scenario. The Autoware planner

brakes for the obstacles, leading to slow navigation. LMPCC finds a slow trajectory but

keeps moving. T-MPC++ with and without a fallback strategy achieve similar

performance, evading the obstacles around the reference velocity. All trajectories lead

to a smooth velocity profile. In Figure 5, the reference velocity is denoted by the black

dashed line. “tmpcnf” denotes T-MPC++ without fallback strategy, “tmpc” denotes T-

MPC++.

Figure 5 Velocity profile of the four methods for the same scenario.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 24 of 64

3.2 Experiment 2

The objective of Experiment 2 is to evaluate the behaviour of an autonomous vehicle

platoon as it navigates a roundabout, specifically focusing on maintaining platoon

cohesion despite intermittent interruptions. The experiment consists of three CAVs

entering and exiting a roundabout in a way that allows the platoon to remain together,

even if one or more vehicles are temporarily required to yield to external traffic,

leading to brief separation within the platoon.

The experiment will be conducted in a hybrid environment using a real vehicle and

CARLA simulator, which enables precise control and observation of the vehicles'

behaviour. Additionally, the perception system on each vehicle includes detection,

tracking, and motion prediction modules, which will work in unison to ensure that

each AV can autonomously sense, interpret, and respond to its surroundings. The

perception system runs on the simulator because the adversarial agents are only

simulated. The experiment is designed to assess the platoon’s ability to manage

temporary disruptions while maintaining coordinated movement through the

roundabout.

Experiment 2 represents a collaborative effort between two teams, Tecnalia and ICCS,

an onsite and offsite integration respectively for virtual environments. The

contributions have been coordinated and structured to reflect the expertise and focus

of each team. This section details the integration of their respective developments

into a cohesive virtual environment, highlighting the combined advancements in

platooning control and V2X-based communication.

3.2.1 Architecture and Design Considerations

Simulation integration requires some specific considerations: the simulation

environment chosen, which allows us to create a scenario and a custom map based

on our real test track to replicate the experiment. In addition, the experiment has

many components that need to run simultaneously, so we need to isolate the

processes. Due to the high computational demands of this system, a High-

Performance Computing (HPC) system is required to run the simulation and automate

three vehicles. Finally, we chose the Robot Operating System (ROS) for the

communication between the nodes.

Simulation environment

Automated vehicle simulators have become an essential tool in the development,

testing and validation of autonomous driving systems. These simulators provide

virtual environments, where developers can evaluate vehicle behaviour, test

algorithms, and experiment with different driving scenarios without risking real-world

consequences. They enable the simulation of different driving conditions, such as

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 25 of 64

varying weather, lighting conditions and terrain, which are critical for comprehensive

testing of autonomous systems.

CARLA (Car Learning to Act) [3] stands out as an ideal choice for EXP2 due to several

reasons:

• CARLA provides highly realistic environments, with detailed textures, dynamic

weather, and lighting effects. This realism is critical when simulating complex

driving scenarios, where visual cues, sensor accuracy, and environmental

details can significantly affect vehicle behaviour. It is particularly useful when

we want to analyse complex events that do not occur during normal driving.

• CARLA provides an extensive API that allows for fine-grained control over the

simulation. It allows developers to manage all the behaviours that occur during

the simulation to force critical situations, as was done in EXP2.

• Developers can create custom maps, control individual sensors, simulate

traffic, and configure vehicle dynamics. This flexibility is essential for testing a

wide variety of conditions and vehicle behaviours. Custom maps are

particularly useful when we want to test specific roads or environments, such

as EXP2, where Tecnalia's test track has been recreated in a simulation

environment.

• CARLA supports a comprehensive range of sensors that can be used in

autonomous vehicles, including LiDAR, GPS, IMUs, radar, and cameras. These

sensors are configurable in terms of position, orientation, and sampling rates,

allowing for accurate and realistic simulation of perception systems.

• CARLA integrates well with other simulation and development platforms,

especially ROS. This compatibility makes it easier to incorporate CARLA into

larger development pipelines and collaborate with other tools commonly used

in autonomous vehicle research. Compatibility with ROS allows our

architecture to be used without any special function to transform the

parameters and transfer them to a real platform. ROS is the framework used

by ICCS and Tecnalia to communicate developments that work together in

EXP2.

In summary, CARLA’s combination of high realism, configurability, extensive sensor

support, and accessibility makes it an excellent choice for developing and testing

autonomous vehicles in simulated environments. Its robust community and

continuous development further ensure that CARLA remains a powerful and versatile

platform for advancing autonomous driving technology.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 26 of 64

Scenario

To manage the proposed scenario in EXP2, we used the Scenario Runner package

developed by CARLA’s developers, which is specifically designed to facilitate the

execution of complex, scripted traffic interactions like the one presented in our

experiment. Scenario Runner supports multiple formats, allowing for standardized

and reproducible testing; in this case, we chose for the OpenSCENARIO [14] format to

standardize our scenario description.

Custom map

The CARLA simulator's flexibility in scenario and map customisation allowed us to

develop a tailored map (Figure 6) replicating the Tecnalia’s facilities (Figure 7), which

can be seen in more detail in the EXP2 video. This customised environment ensures

that we can test the experiment within a highly accurate, relevant setting. Moreover,

it allows for hybrid simulations that integrate real sensor data and vehicle inputs ,

which will be developed in the context of T5.2, bridging the gap between virtual and

physical testing for enhanced experimental fidelity.

A fountain has been added to the custom map in the middle of the roundabout to

make sure there are occlusions to challenge the perception system.

Figure 6 Simulated custom map of Tecnalia’s test track.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 27 of 64

Figure 7 Tecnalia’s Facilities.

The creation of the custom CARLA map began with lane design, accomplished using

Mathwork’s RoadRunner tool [15] . Leveraging OpenStreetMap data and orthophotos

by PNOA [16] (Spanish National Aerial Topography Plan), we generated a

georeferenced OpenDRIVE [17] file to accurately represent the road network. Building

models were created in Blender, using additional OpenStreetMap data to ensure

structural accuracy, before being exported alongside the RoadRunner-generated files

into Unreal Engine. Finally, we selected a pre-existing static fountain asset available

within the CARLA project to complete the environment, integrating it seamlessly with

the custom-built components.

Isolation and containerization

The entire architecture has been designed leveraging the versatility of Docker [18]

containers, allowing for efficient modularization and isolation of each component. By

compartmentalizing all elements of the system within separate containers, we

maximize the benefits of isolation, ensuring that each module (such as perception,

control, and communication) runs independently without interference from others.

This approach not only enhances the stability and security of the system but also

simplifies deployment, scaling, and troubleshooting, as each container can be

managed, updated, or replaced individually. Docker’s containerized environment thus

provides a robust foundation for developing, testing, and running the platoon’s

architecture in a controlled and reproducible manner.

We have built two main images, the first one runs CARLA Simulator and the control

architecture, which has its own dependencies. And the second one oversees the

perception suite, which needs a specific CUDA environment [19] and some deep

learning libraries that have their own requirements.

Both images take advantage of Nvidia Docker [20] container (Figure 8). NVIDIA

Docker, or more commonly referred to as NVIDIA Container Toolkit, is a tool that

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 28 of 64

allows Docker containers to use NVIDIA GPUs for accelerated computing. This setup is

especially useful for applications that require GPU support, like machine learning, data

science, and autonomous driving simulations. Standard Docker containers do not have

native GPU support, so the NVIDIA Container Toolkit is essential to bridge this gap by

enabling GPU resources within containers.

Figure 8 Nvidia docker container toolkit. [21]

High-Performance Computing (HPC)

Due to the computational requirements of EXP2, we have leveraged our computing

units with an server grade HPC. The system in place has 64 threads of AMD EPYC 9124

16-Core Processor CPU at 3.7 GHz, 768 GB of RAM at 4800 MHz and an Nvidia L40 with

46 GB of VRAM.

Developers connect to the server using ssh protocol [22] and can use the display

interface thanks to a remote desktop. We have created a network system that allows

more than one developer to connect at the same time, each with their own display,

to use the simulator without disturbing other colleagues.

To achieve this milestone, we are using Docker's ability to isolate networks to be able

to use the same Docker image and code without having to change all the CARLA

network ports (server, traffic manager, ...). Each user has their own network, which is

automatically created when they deploy all the containers.

Robot Operating System (ROS)

Our automated vehicle architecture is based on ROS2, because it allows the workflow

to be divided into nodes that can work in parallel. The communication between the

nodes is done through topics, which contain all the information that needs to be

transferred to the next segments of the architecture. These topics can contain raw

data (images, point clouds, ...) or processed information (detections, control

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 29 of 64

commands, ...). We use ROS2 Humble [8], which has an end of life (EOL) date of May

2027, allowing us to use this architecture for several years with security updates.

Additionally, we integrated the CARLA ROS bridge [23], which includes services for

reloading and controlling scenarios directly through ROS. This integration ensures

seamless interaction with the CARLA environment, enabling efficient Software-in-the-

Loop (SiL) testing and rapid scenario reloading. By leveraging this setup, we achieved

an optimal testing environment where the proposed scenario could be consistently

recreated, supporting robust analysis, and testing of platoon behaviour under varying

traffic conditions in a roundabout.

3.2.2 Step-by-Step Integration Process

Onsite Integration

The following section details the steps/subsystems that make up EXP2. We have based

our experimental integration on two Docker images (CARLA Image and Perception

Image), which form the basis of various containers that launch some nodes.

Figure 9 shows the complete architecture of this proposal, where eighteen containers

are launched. Three are responsible for the CARLA server (CARLA World, Scenario

Manager and Scenario). These are followed by five containers for each vehicle

(control, detection, tracking, motion prediction and data collector).

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 30 of 64

Figure 9 Experiment 2 architecture.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 31 of 64

CARLA Image

We have created a custom image that met all the simulation requirements. We

installed the CARLA binary distribution using a custom one based on CARLA 0.9.14 and

Python 3.10 [24]. This last requirement is due to the fact that we need Ubuntu 22.04

[25] for ROS2 Humble and it uses Python 3.10 natively. When building the image, we

need to share the user id of the host to run and modify the code, which is hosted in a

shared volume.

When we run the container, we share some environment variables that are needed to

run the simulation. We share $DISPLAY, $ROS_DOMAIN_ID and the $EVENTS_PATH,

the last variable being the shared path where all the code is allocated. We also share

some volumes and files where the code is stored, and the custom network built for

the user.

One vehicle control

Each ego vehicle needs a total of 8 nodes to coordinate the control:

• Global planner: There are two modes integrated for global path generation,

relevant to this experiment. If the vehicle is on the leader position the global

path is generated using Dijkstra algorithm [26] on the CARLA map information

for an initial and goal position. If it is not, the global path updates with the

position of the leader vehicle with a frequency of 20Hz.

• Behavioural: This node manages Platoon Management Messages (PMM) and

Platoon Control Messages (PCM) to determine, first, if the ego vehicle is in a

platoon and second, if it is, which is its position.

• Localization: This node acts as a parser of the GNSS sensor to the relative

position inside the map. Additionally, it composes the state of the vehicle by

reading IMU and Speedometer data form the CARLA ROS bridge.

• Trajectory generator: the trajectory of the vehicle is generated using

information from the global planner node, as well as the information of the

surrounding vehicles in the platoon. Interaction with obstacle is added through

the communication with the perception stack.

• Longitudinal control: This is the low-level control that generates the throttle

and brake values based on the speed error.

• Lateral control: This node reads the local path created in the trajectory

generator node as a reference to calculate the steer value.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 32 of 64

• Control Bridge: This node parses the control values to feed the CARLA ROS

bridge.

• Communication: The communication node, in this case acts as a virtual

communication node, where virtual Cooperative Awareness Messages (CAM),

Decentralized Environmental Notification Messages (DENM), PCM and PMM

messages are sent, received and parsed into manageable information for the

other nodes.

Figure 10: One vehicle control ROS architecture.

Perception image

The perception image requires some libraries to run the deep learning models for

detection and motion prediction. We have combined both requirements into one

docker image to use the same for both tasks. It is based on an Nvidia image with CUDA

12.0 and cudnn 8 with Ubuntu 22 for ROS2 Humble.

One vehicle perception

Each vehicle has its own perception suite, which consists of three main nodes, all built

from the perception image. The first is responsible for detection and has LiDAR input

from the vehicle. The second performs tracking from the environment and requires

the detections from the previous node and the global transformation. Finally, the last

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 33 of 64

node is responsible for motion prediction, which was developed in the EVENTS

project. It needs the tracking objects, the position of the ego-vehicle and the global

transformation.

Scenario

The OpenScenario [14] file has been developed using QGIS [27]with a plugin that let

us connect to a CARLA server, load the OpenDrive [17] information from the active

map and customize the scenario with the available vehicles or pedestrians. Moreover,

the plugin allows for vehicle behaviour customization, which contributes to the

complexity of the scenarios created.

In the specific case of EXP2, the scenario counts with three ego vehicles set in a line

before the roundabout and 2 other vehicles that act as obstacles, driving at a constant

speed around the roundabout guided by an array of waypoints.

Reinforcement Learning integration

Integration with the reinforcement algorithm required a special setup, as training this

tool requires many steps to find the solution.

First, the information is fed into the algorithm via ROS2, which synchronises all the

data from different sources.

With all this data synchronised, we faced the problem that the whole setup would not

be able to run during long runs. So, we prepared some health checks for each

container and some global checks to restart the simulation.

Container HealthChecks

As mentioned earlier, each container has its own health check to assess the

performance of the node, and if there is an error or bug, the node is restarted.

We will detail the health check for each node:

• CARLA Server: check the world frame rate to assess the node. If this frame rate

is below a threshold, the node will be restarted.

• Scenario: a variable is published to indicate that the node is alive. If this

variable is not published with a frequency greater than a threshold, the node

will be restarted. The CARLA server is also checked to restart the node,

because if the server is restarted, the scenario node should also be restarted

to connect the two environments.

• Scenario manager: a variable is published to indicate that the node is alive. If

this variable is not published with a frequency greater than a threshold, the

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 34 of 64

node will be restarted. The CARLA server is also checked to restart the node,

because if the server is restarted, the scenario manager node should also be

restarted to connect the two environments.

• Ego-vehicle control: check the world frame rate to assess the node. If this

frame rate is below a threshold, the node will be restarted.

• Detection: the output topic must have a frequency above a certain threshold,

otherwise the container will be restarted.

• Tracking: the output topic must have a frequency above a certain threshold,

otherwise the container will be restarted.

• Motion Prediction: the output topic must have a frequency above a certain

threshold, otherwise the container will be restarted.

Figure 11 shows an example of a health check of the motion prediction container. This

behaviour can also be seen in the EXP2 video.

In addition to these considerations, there is a global variable that checks that the

whole system is running correctly; if this variable is true, the whole system is restarted

to continue training.

Restarting the nodes is made by a community docker called autoheal [28].

Figure 11: health check of a node.

With this system, we can check the logs of the containers to know the actual status

of each one. For this purpose, we use a tool called Portainer, which is a container

management tool (Figure 12). This tool is demonstrated in the EXP2 video, which

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 35 of 64

shows full orchestration.

Figure 12: Portainer architecture for one vehicle.

Three vehicles integration

To extend this architecture to three vehicles, we need to triple the following nodes:

ego-vehicle control, detection, tracking, motion prediction and data collection.

We then share the information from each agent with the others to take advantage of

the V2X perception system.

Offsite Integration

As described in the section above, an additional virtual deployment has been setup to

aid in the tasks related to V2X communication of the a coordinated platooning, more

specifically based on Collective Perception (CP) information exchange among the

agents forming the platoon. For virtual testing of the CP module, an additional

simulation environment has been setup in CARLA (v.0.9.14)1 to support the following

core functionality:

▪ Custom scenario editing in CARLA;

▪ Simulation and sensor data recording mechanism for multiple agents: CARLA

simulation data (groundtruth), sensor raw data, sensor data as rosbags ;

▪ Data replay in CARLA;

1 https://carla.org/2022/12/23/release-0.9.14/

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 36 of 64

▪ Interfacing the CP module with CARLA for real time experiments via CARLA-

ROS bridge;

▪ Support for hybrid testing via real-time communication of a real agent in ICCS

test track with EVENTS simulation environment.

Figure 13 CARLA environment bird-eye-view snapshot.

In Figure 13, a roundabout scenario with occlusions (buildings, other vehicles,

roundabout static) is executed with agents capable of generating sensor data: on the

left window a snapshot of the bird’s eye view roundabout scenario is depicted; on the

right window, the RGB camera output of the black vehicle approaching from the north

is depicted – other agents’ camera output can also be depicted (our setup

accomodates up to 7 agents visualized simultaneously).

Two testing modes, one offline and one online, are supported by the ICCS virtual

testing pipeline as shown in Figure 14 below.

Figure 14 Virtual testing pipeline a) offline and b) online testing modes.

Notes: Main CP testing is via data replay; CPMs are encoded in a custom format similar

to ETSI CPM to be consumed by CP python module.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 37 of 64

Data replay support (offline testing)

Simulation data replay happens via CARLA replaying system2, while sensor data replay

is supported either via Rosbags or via raw sensor data recordings. Those recordings

feed the CP module developed in WP3 for testing purposes.

CARLA environment setup

CARLA custom scenario editor: A python-based library was created to simplify

scenario editing in CARLA with the requirement to support scenario creation for

perception layer testing, where one ego is configured through initial position and

route (set of waypoints) and all the other agents follow their pre-set route and drive

relative to that ego (i.e., no collisions occur and speeds are relevant to the speed of

the ego). Spawning of objects (static or dyamic) anywhere in the scene is easily

supported by CARLA. In our setup, apart from the connected vehicles entering a

roundabout, a static camera is also used, spawned at an elevated location at the

center of the roundabout. This is used for gathering groundtruth scene data.

CARLA LiDAR configuration: the configuration of the CARLA emulated Velodyne Lidar

parameters (sensor.lidar.ray_cast3) to match our real LiDAR (VLP-16 Velodyne):

{'range': '50', 'rotation_frequency': '30', 'points_per_second': '300000'}).

CARLA synchronous and asynchronous mode of operation: Synchronous mode of

operation is used for all EVENTS virtual experiments in order to ensure repeatability

of scenario-based testing process. Asynchronous mode may be selected in the case of

a hybrid experiment setup, where data from a real agent shall be displayed in a CARLA

scenario with multiple virtual agents.

CARLA KPIs logging

A small set of execution KPIs are automatically logged in each run:

▪ Scenario execution duration

▪ Collisions (de-activated but available)

▪ Average velocity of each agent [m/s]

▪ Minimum TTC and distance to other agents

▪ Computation time

CARLA Hardware: The experiments ran on a laptop ASUS ROG AMD Ryzen 9 7940HS;

32GB Ram DDR5 5200MT/s; IntegratedGPU Radeon 780M Graphics; DedicatedGPU

2 https://carla.readthedocs.io/en/0.9.7/recorder_and_playback/
3 https://carla.readthedocs.io/en/latest/ref_sensors/#lidar-sensor

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 38 of 64

NVIDIA RTX4060 mobile; Manjaro Linux 24.1.2; Linux Kernel 6.12; NVIDIA driver

550.120.

Interfacing an external ROS-based module: In order to support real-time simulation

and CP testing, two external modules had to be interfaced with CARLA via CARLA-ROS

bridge, as shown in Figure 14.b .The two modules are the on-board perception module

developed by ICCS using camera-based perception (YOLO [29] was used) verified by

lidar and the CP module responsible for the fusion of all agents’ CPMs and the creation

of a scene CPM which is transmitted back to the connected agents.

Hybrid testing support (future work for experiment that is also part of T5.2)

CARLA real world interface: within EXP2 an additional experiment, part of T5.2, includes

a real vehicle deployed on ICCS premises, communicating in real-time with the ICCS

CARLA environment. For this purpose, message queuing services (using gRPC or MQTT

protocols) will be supported at the side of the real node (ICCS prototype vehicle)

offering real-time connectivity with the CARLA PC which will integrate an

appropriately configured connectivity gateway (gRPC adapter).

Importing OSM map data to CARLA : A prerequisite for hybrid testing is that real test

track topology, lanes, environment can be reproduced inside CARLA via a custom map

importing. For this purpose the functionality of CARLA v.0.9.154 will be used while a

digital map of ICCS premises (NTUA campus) is already available from T3.1 (see project

deliverable D3.2 [30]) using the RoadRunner-CARLA pipeline for map creation from

OpenStreetMap format.

3.2.3 Key Challenges and Solutions

The key challenge we faced was to achieve a smooth rendering experience in CARLA

while multiple sensors generating big size data (RGB and Lidar data from multiple

agents) could be recorded simultaneously. To do that the following actions were

needed:

▪ CARLA modules that we do not need for the experiment and require

computing resources are deactivated: that is ‘lane keeping’ and ‘collision

notification’ sensor.

▪ Logging on a MMAP file on a tmpfs (RAM filesystem) for quick logging: we use

a shared memory file mechanism for logging the data in a tmpfs (RAM)

filesystem file, reducing the time required for writing all the amount of data

from all the agents and sensors to an m.2 NVME SSD. By reducing the data

storing time we can achieve simultaneous storing and human perception-

4 https://carla.readthedocs.io/en/0.9.15/adv_digital_twin/

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 39 of 64

suitable rendering quality. RGB images are rendered and logged at a resolution

of 800x600 pixels.

One of the main problems with full integration was the large number of modules that

needed to work together. They also needed to be stable and able to be restarted if

they failed. In addition, there are often two deep learning models per vehicle plus the

CARLA simulation that need to run on the GPU. So we built everything on an HPC

server, which does not allow the kind of development that can be done on a desktop

PC. To solve the above situations, we take the following actions:

• Each module has its own container, which runs in isolation and is tested every

20 seconds to make sure it is working properly. We use Docker Compose and

its tools to test the health of the containers. In addition, the test checks assess

the frame rate of various variables using ROS2 to evaluate the performance of

the container. If it is not running properly, it is restarted to continue. This

behaviour is critical for the RL integration, where the simulation needs to run

for hours at a time.

• The entire simulation environment runs on an HPC with a dedicated NVIDIA

GPU for server platforms, which has no display outputs. We simulate these

displays and build a custom one for each developer using the server.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 40 of 64

3.3 Experiment 3

EXP3 focuses on the self-assessment of the onboard perception system within the ego

vehicle. This newly developed self-assessment approach [31], [32], [33], [34], [35], [36]

will be integrated into Ulm University's test vehicle. Before implementation on the

test vehicle, the approach is tested and validated through simulations, which replicate

the entire architecture and software stack. These simulations include the onboard

perception self-assessment system, complementary V2X data in the form of CPMs

from an infrastructure pilot site, the fusion of onboard perception with external CPMs,

and behavioral decision-making to support trajectory planning.

3.3.1 Architecture and Design Considerations

The architecture for EXP3 is illustrated in Figure 15. To implement and integrate this

architecture into the software stack, key modules had to be developed and validated.

These modules include:

1. Object tracking with self-assessment,

2. V2X data integration via CPMs,

3. CPM and track list fusion, and

4. Behavioral decision-making.

Figure 15: Overall architecture of EXP3 modified from D2.2 [37].

The object tracking with self-assessment module underwent initial testing in isolated

and simplified simulation environments, such as the tracking simulation framework

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 41 of 64

[38]. This phase focuses on analyzing various potential errors in object tracking and

validating the self-assessment module's ability to monitor and identify these errors or

disturbances. Results from this stage are documented in [33], [34], [35], [36].

After demonstrating its functionality, the self-assessment module was implemented

within the comprehensive simulation environment for EXP3. This integrated internal

virtual environment, developed at Ulm University and basically described in [7], allows

for the testing of the full software stack. Within this environment, all modules—

including V2X data handling, fusion processes, and decision-making—are combined to

evaluate the architecture holistically under simulated conditions. The tool allows to

simulate human driven vehicles with realistic behavior as well as CAVs on a provided

map in lanelet2 [39] format. The used map reflects the roads at the pilote site in the

suburban area of Ulm-Lehr, where the evaluation in real traffic will be performed.

The used simulation environment is illustrated in Figure 16. This figure provides an

example of various elements involved in the creation of the CPMs in EXP3, offering

insights into the simulator and its functionality. Note, however, that the simulator and

its simulations are primarily demonstrated visually in the corresponding video created

for this deliverable. The cameras’ fields of view of the intersection used in EXP3 are

represented as rectangles that indicate the coverage areas of the cameras. In addition,

the 3D Tracks, depicted as solid blue bounding boxes, represent the object tracks in

3D space, which are used to generate the CPMs. These tracks are based on the

detections appear as light blue outlined bounding boxes, showing the detected

objects extracted from camera images in 2D. Note that the detections are mostly

hidden under the tracks, making them hardly visible in the figure. The ground truth,

which is avaible in simualtion, is shown in light green, representing the true 2D

bounding boxes for the objects. Also, the ground truth is hardly visible behind the 3D

tracks, which indicates good tracking performance.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 42 of 64

Figure 16: Simulation environment for Experiment 3 based on a software-in-the-loop
framework [7].

3.3.2 Step-by-Step Integration Process

This subsection outlines the step-by-step procedures followed to integrate EXP3 into

the simulation environment, covering the key tasks, software modules, and challenges

encountered during the process.

The key tasks for the integration process are:

1 Module Development and Testing: The core modules for EXP3 were developed

and validated independently to ensure functionality. This included object tracking

algorithms and self-assessment mechanisms. Early testing was conducted in

simplified simulation environments such as the tracking simulation framework

[38].

2 Simulation Environment Setup: The simulation environment was established

using Ulm University's virtual simulation environment, based on [7]. This

environment allowed the integration of Experiment 3 alongside complementary

modules from the whole software stack.

3 Integration of EXP3 Components: V2X data in the form of CPMs was incorporated

into the simulation. This data was fused with an onboard object tracking outputs

to augment the perception field of view.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 43 of 64

3.1 Object Tracking with Self-Assessment: The object tracking module, equipped

with self-assessment capabilities, was developed in WP3 (will be described in

deliverable D3.2) to monitor and evaluate the reliability of detected objects in

real-time. This module serves as the foundation for detecting and addressing

tracking errors, ensuring accurate perception.

3.2 V2X Data Incorporation: Cooperative Perception Messages (CPMs) were

integrated as an essential V2X data source. These CPMs, generated from an

infrastructure pilot site, provided an extended perception range beyond the

onboard sensors.

3.3 CPM and Track List Fusion: A dedicated fusion module was implemented to

combine the onboard object tracking outputs with external CPM data. This

fusion process augmented the vehicle's perception field of view and enhanced

the accuracy and robustness of the perception system.

3.4 Behavioral Decision-Making Module: This component processes the fused

perception data to enable informed decision-making. It incorporates

information from the self-assessment on the reliability of the ego vehicle’s

perception to determine whether the trajectory planning module can operate

normally or should prioritize a safe stop point, utilizing V2X data.

4 System Validation: The integrated system underwent iterative testing to evaluate

the interaction between modules, focusing on robustness and error handling in

various simulated scenarios.

3.3.3 Key Challenges and Solutions

1. Interfacing Modules: Ensuring seamless communication between the self-

assessment module and other components, particularly during error flagging,

required extensive debugging and iteration.

2. Error Modeling: Accurately simulating various object tracking errors to test the

self-assessment module required significant effort to achieve realistic

conditions.

Despite these challenges, the integration of EXP3 into the simulation environment was

successfully completed, providing a robust platform for further testing and validation

of the developed modules.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 44 of 64

3.4 Experiment 6

The goal of this experiment is to propose a perception system, which can detect an

object at a far range in adverse weather conditions. The system has to estimate the

relative distance and classify the object as over-drivable or non-drivable. In the

scope of EXP6, scenario is the following , the ego vehicle is driving straight forward

to the debris as shown in the Figure 17. Differents parameters will be introduced as :

ego vehicle speed , orientation of debris in regards to road axis , lateral position

offset of the debris in regards to ego vehicle position , and debris’s material, shape

and size.

Figure 17 EXP6 Scenario definition

3.4.1 Architecture and Design Considerations

To guarantee a working and effective architecture ,the base for the realisation of the

experiment, an existing virtual simulation system composed of of a third party tool

and an Aptiv software was used. This base is shown in Figure 18. The system consists

of a Realtime Environment Simulation Provider. In this case, a dSPACE System was

used, which provides ground truth to other system components via OSI (Open

Simulation Interface) SensorView and offers CAN/ETH interfaces if closed Loop

functionality is required.

Figure 18 Initial Virtual Simulation System architecture

The ground truth is used by the Virtual Environment (VE) Engine that runs two

different Models. The first one is realtime APTIV Radar Model, which generates APTIV

Radar specific detections based on the moving and static objects in the OSI

SensorView. The Aptiv Radar detections then are fed into the APTIV Radar Logic

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 45 of 64

Model, which contains all components that are part of the APTIV Radar SW.

Depending on the requirements, this contains a Radar Tracker, Radar Feature

Functions, and the representation of the physical communication interfaces (CAN,

ETH). The Environment Simulation is parametrized with a fitting Scenario, which

consists of a Road Environment and a driving scenario.

To integrate the over-drivable feature into the proved solution, in the first step, the

Virtual Scenario and the APTIV Radar Model needs to be adapted to contain objects

that fall under the consideration of the over-drivable feature. As OSI SensorView is the

interface to the APTIV Radar model, those objects need to be configured with OSI

object definitions as well. Once Environment Simulation and APTIV Radar Model are

updated with the new Objects, the APTIV Radar Model will provide detections for

those objects which are handed to a standalone SW block of the over-drivable

function. This architecture provides first results and can be used to evaluate the

performance of both the APTIV Radar Model and the over-drivable feature function.

The modification is depicted in Figure 19.

Figure 19 Integration of over-drivable OSI objects

As the final step, the standalone over-driveable Feature Function needs to be

integrated into a APTIV Logic Model, to be executed next to all other features of the

APTIV SW.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 46 of 64

Figure 20 Final integration architecture

3.4.2 Step-by-Step Integration Process

From the above defined architecture, the different integration steps are as follows:

1. Environment Simulation

a. Debris objects definition : during this step we defined all relevant

Objects with OSI specification in Environment Simulation Tool

b. Scenarios definition : we created Scenarios and Roads including

relevant Objects

2. Radar Model

a. Support for relevant OSI objects : we added mesh support for relevant

OSI Objects

b. Radar Model Detections validation : we compared test track data to

simulation data

c. Radar Model Detections : we cooperated with Tracker team (team who

develop and integrate sensor data algorithm fusion block) to ensure

detections are valid for static object feature

3. Logic Model

a. static object feature into Logic Model Integration : we integrated the

algorithm block

b. Validation : we validated output data of Logic Model block by checking

same behaviour seen by our Tracker team

4. System Test : we tested the global setup to check performances

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 47 of 64

Below, the different involved components are explained in detail and the steps leading

to the final system are described.

Environment Simulation

The simulation environment used in this experiment was dSPACE ASM (Automotive

Simulation Models) in combination with a dSPACE Scalexio Real Time (RT) Hardware.

The dSPACE Scalexio is running a combined model for environment, road, traffic and

host vehicle ego motion, so that the wide range of required parameters can be

considered.

This setup enables the creation of realistic virtual scenarios, which are used within the

Realtime Environment Simulation to feed radar models with OSI ground truth data

(Open Simulation Interface). Accurately modelling these scenarios is critical to

providing realistic input for sensor perception.

A specific scenario was designed to incorporate debris object positioned at a varying

distance. In this scenario, the ego vehicle travels at a constant speed of 65 km/h on a

road devoid of guardrails, starting at a distance of 350 meters.

To evaluate the radar perception algorithm’s capability in assessing driveability,

diverse types of debris objects where introduced. The objects shown in Figure 21 were

selected for this purpose: These objects, beside their localisation and visualisation

inside of the Environment Simulation, were parametrized as OSI objects.

Figure 21 Example of implemented debris objects

Radar Model Development

The core focus of the radar model development is to replicate the physical behaviour

of radar sensors. It uses OSI ground truth data to generate perception point clouds

that simulate radar detections.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 48 of 64

The primary goal for this experiment was to integrate objects relevant for the SG

Feature into the existing Aptiv sensor model. This included:

• Integration of Debris OSI Objects into APTIV Radar Model.

• Validation of radar sensor model vs. real world data to cover use-case's

small objects with high fidelity based on initial real world data

Beside from the adaptions made for the APTIV Radar Model, the consequently step

was collaborating with the Static Geometry Feature developers to adjust the model

parameters to achieve maximum alignment with real-world conditions. Following that

we conducted extensive testing and validation to ensure the simulated radar

detections function as intended.

Logic Model: The APTIV Logic Model is tasked with integrating APTIV Radar Features

as runnable Functional Mock-up Unit (FMU). It takes the APTIV Radar Model

Detections as input and runs all other features that are part of the Radar system.

Together with the APTIV Radar Model, it is the virtual representation of an APTIV

Radar System. It allows for a full evaluation of the Radar SW components via Live data

injection and generated debug files or Live Data output.

For this experiment, the functionality of the Static Geometry (SG) feature was

integrated into an existing Logic Model, so that it can run together with Tracker and

ADAS Features and as part of the Realtime system, making it an equivalent alternative

for real world Vehicle tests. Fully integrated, the Logic Model allows to validate

components depending on the SG Feature like Motion Planning algorithms.

3.4.3 Key Challanges and Solutions

To get the proper output, the existing APTIV Radar Model for the APTIV Front Looking

Radar had to be tuned to match the behaviour of the used SW/HW combination.

Parameters like field of view, range, and mounting positions had to be adapted to the

virtual Host vehicle.

The Environment simulation does not contain debris objects by default. Although it is

possible to define new OSI objects and define their parameters, those 3D Objects had

to be implemented in the Sensor Model as well to have a proper representation.

Whenever a new functionality is implemented, it takes time until the tooling support

is established. Thus, it was necessary to use an alternative approach for validation to

ensure results can be created and analysed.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 49 of 64

3.5 Experiment 7

As part of Experiment 7 extended description*, ICCS aims to integrate a Machine

Learning module which jointly conducts prediction and planning (Joint PP) for

autonomous vehicles testing within a virtual simulation environment. We consider

various scenarios in highway environment with traffic which test the autonomous

vehicle under various critical conditions including cut-ins, breaks and merges. The

open-source nuPlan simulation environment was selected due to its closed-loop

simulation support and its popularity in the automotive research community. In this

deliverable, the integration software details are reported, with the algorithmic and

mathematical counterparts presented technically in deliverable D4.3 [40].

*Note: As it is already reffered in the introductory part of this deliverable, this is a new

part of ICCS work that was taken over in the context of WP4 based on the second

project amendement (approval is pending at the time of writing) and which is still

under development. What is reported here is the progress we made till this

deliverable’s submission date.

3.5.1 Architecture and Design Considerations

Figure 22 below demonstrates the virtual training setup, which uses samples from the

nuPlan database from various scenarios. The number of simulation steps K and

reaction steps K’ is a hyperparameter, to be chosen dataset-dependent. The simulator

logs trajectories and vectorized maps to feed the ML systems (prediction, planning).

Specifically, the input is training samples consisting of vectorised agent and map

locations (i.e., logged 2D trajectories) and semantic information (traffic states, vehicle

types and identities, etc.) logged in the given database as annotations. The simulation

steps analytically are:

• Input Preprocessing: Vector objects are extracted from the Perception database and

arranged in a tabular fashion (and min-max scaling is applied as required by the

following deep learning modules. Two submodules are considered one for Agents

and one for Maps which extract feature representations that feed into the next ML

components of the framework for prediction.

• Joint Prediction and Planning (PP) call: Forward pass of (learned) features by our

proposed system that outputs a traffic-compliant time-series of non-ego agent

trajectories (predictions) and ego agent trajectories (plans) for the next K’ frames,

given K simulation step input previously.

• Differentiation Engine: Framework with automatic differentiation capabilities

(PyTorch) to backpropagate gradients and update the weights of each Deep

Network in the Joint PP system.

• Simulator: Closed-loop simulator accepting the prediction and planning

outputs of Joint PP system. The simulator executes the motion plan for ego

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 50 of 64

vehicle using the control system equations and computes the prediction and

planning metrics for the current training segment and visualizes results

during runtime.

• Metric logger: Logging module monitors and plots the prediction and planning

metrics online during the inference section of time window Tp for the current

segment. This section outlines the architectural framework and design

principles guiding the integration of prediction on the NuPlan simulator,

focusing on system requirements and interoperability with other/existing

components.

Figure 22 Virtual training Setup of Joint Prediction and Planning system

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 51 of 64

Figure 23 NuPlan Framework High-Level software description where green color denotes
modules that had to be adapted by ICCS.

3.5.2 Step-by-Step Integration Process

As observed from Figure 23, we have added extra predictive functionality with ML

components for the non-ego vehicles, together with an integrated package for

merging prediction and planning in a modular, differentiable manner. NuPlan provides

a configurable environment via Hydra configuration files, which we edit to add to the

Joint PP approach. Specifically: ICCS changed the ”Observations”, which correspond

to the input features consumed by the planner module to conduct inference on ego

agent future trajectories, by adding additional prediction features (non-ego agent

trajectories) as a custom class attribute by changing also the custom Hydra

configuration file for the NuPlan simulator. The prediction module continuously

updates a ”prediction trajectory” field stored for each agent as an “Observation” class

in simulation. On a high-level, the framework at each iteration step assigns the

predicted trajectory state sequence, together with historical tracks of each agent as

observations (for details see deliverable D4.3 [40]) and the feature builders of NuPlan

construct features for planning accordingly. We further change the planners by

expanding their input dimensionalities to consume non-ego agent tracks (3D pose

information), for most planners as flattened vectors on the regression head. Further,

we expand on the metrics for evaluation, including those relevant for Joint PP

evaluation (see D4.3 [40]). Finally, the vizualisation board was edited, to show non-

ego trajectory prediction lines, next to the actual controller output.

The key objectives for the integration process are listed below:

1. System Integration. NuPlan adopts a modular pipeline in terms of hardware

resource allotment for each component for building model features and targets

for learning(preprocessing) and training, hence correct assignment of data into

CPU for the preprocessing steps and GPU for training, validation and testing

ensures correct allocation of memory, avoiding high disk memory pressure.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 52 of 64

2. Scenario Filtering: NuPlan logs and vehicle tracks are divided into various

scenario tags, specifically: { ”medium magnitude speed, near construction zone,

near multiple vehicles , on intersection, stationary in traffic, traversing traffic light

intersection”}.A custom filter module is being developed to retrieve scenarios

which best meetsthe operational design domain of the EXP 7.

3. Correct Assignment of Features for Preprocessing: Selecting the correct features

(object tracks as poses, HD map features) and assigning them as ”observations”,

which are fed to preprocessing modules, ensures seamless communication of the

simulator with the feature building modules of the planning models in NuPlan

and correct training of ML models.

4. Module Development and Validation: Each module of EXP7 was trained and

tested individually, i.e., Predictor, Planner, in the simplest core configurations in

terms of: {scenario, controller, map, perception model} in open and closed loop

simulation protocol to validate standalone performance prior to integration.

5. Behavioral Decision-Making and Trajectory Prediction: Development and

integration of trajectory forecasting module presented in D4.3 [40] which

regresses the non-ego waypoint time-series given features supplied by the

simulator during runtime. Meeting time restraints for predictor inference is

critical to meet the planners input data requirements and ensure quick

simulation iteration.

6. NuPlan Dashboard trajectory vizualization: The NuPlan visualization

component, nuBoard, was modified to show non-ego trajectories forecasted by

the Prediction module and the Ego Trajectory computed by the standalone

NuPlan vs the integrated NuPlan to be compared qualitatively.

3.5.3 Key Challenges and Solutions

The NuPlan simulator is originally designed for planning of the ego vehicle without

considering non-ego vehicle trajectory predictions, which was previously shown to be

of high importance in decision making. Hence a multitude of challenges was faced in

understanding complex undocumented code responsible for feature and ground truth

extraction and complementing with code necessary for prediction of non-ego vehicles.

Further, the metric structure of the evaluation had to be modified, as well as the

vizualization code for the dashboard, to include key metrics necessary for joint

prediction and planning, including dynamic ADE (Average Displacement Error),

FDE(Final Displacement Error) etc.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 53 of 64

3.6 Experiment 8

EXP8 focuses on emergency evasion manoeuvre on slippery road under rain

conditions. The objective is to avoid collisions (e.g., pedestrians or cyclists) in poor

weather conditions on slippery roads. The scenario replicates a classical double-lane

change manoeuvre involving two static / slowly-moving obstacles, which the vehicle

must avoid. Heavy rainfall reduces the road friction coefficient to 0.5, thereby

increasing the manoeuvre’s complexity and requiring precise control strategies, see

Figure 24.

Figure 24 Collision avoidance scenario with two obstacles.

In this scenario, the vehicle encounters unexpected obstacles with limited visibility

due to adverse weather conditions, necessitating an immediate and aggressive

response. The evasion manoeuvre involves several critical stages. First, the vehicle

executes heavy braking to reduce speed rapidly while initiating a sharp cornering

manoeuvre to bypass the obstacles. Following the initial evasion, it must perform

another cornering event to return to its original lane while simultaneously

accelerating to mitigate the risk of a rear-end collision. This sequence of actions

inherently involves complex interactions between longitudinal and lateral tyre forces,

creating a highly nonlinear control problem due to tyre-road interactions in the

presence of reduced friction.

3.6.1 Architecture and Design Considerations

To address the scenario’s complexity, our virtual environment incorporates unique

characteristics that ensure accurate modelling and testing:

1. High-Fidelity Vehicle Plant Model: The nonlinearities arising from suspension

kinematics and dynamics, tyre forces, and the braking system necessitate a

highly accurate and robust vehicle plant model. We use a high-fidelity

simulation environment such as IPG CarMaker [4]. The vehicle model was

parameterized using mass-inertia data from a vehicle inertia measurement

facility, suspension kinematics, and compliance characteristics obtained from

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 54 of 64

testing on a Kinematics & Compliance test rig for wheel suspension analysis. It

was then validated through field tests conducted on a proving ground [41].

2. Advanced Tyre Modelling: The coupled dynamics of longitudinal and lateral

tyre forces require an accurate and robust tyre model. For this, we employ the

Delft Tyre Model [42], recognized for its effectiveness in capturing tyre

dynamics and nonlinear behaviours, even under adverse conditions, and also

experimentally validated.

3. Optimized Model Predictive Control (MPC) Framework: The proposed control

solution leverages an MPC framework to address nonlinear control challenges,

integrating real-time motion planning, path tracking, and stability constraints

while considering powertrain and braking limits, using ForcesPro for fast,

reliable nonlinear optimization solutions.

4. Real-Time Feasibility Testing: To ensure real-time feasibility, the controller is

developed in MATLAB using ForcesPro [43]. For real-time testing, it is

translated into C++ for faster execution, providing lower-level control

compared to interpreted environments.

The complexity and unique requirements of EXP8, including the need for a high-fidelity

vehicle plant model and an advanced tyre model, necessitate the creation of a unique

architecture for developing and validating the proposed control solution.

The fast development architecture is focused on three essential requirements to

support efficient control strategy design. First, it must provide access to a high-fidelity

simulation environment validated with experimental data. For this, we employ IPG

CarMaker [4] in combination with the Delft-Tyre model [42], ensuring that simulations

closely mirror real-world dynamics and accurately capture nonlinear tyre-road

interactions. This high-fidelity modelling is critical for robust control design. Second,

the architecture must support rapid evaluation and iterative testing of design

concepts within a unified multidomain simulation environment. This capability

accelerates the development cycle, allowing for the refinement of control strategies

in a flexible, adaptable manner. Third, the architecture must facilitate the generation

of C++ code suitable for deployment on the embedded systems used in EXP8, ensuring

smooth transitions from simulation to implementation.

MATLAB/Simulink is serving as the environment for developing and validating the

proposed Model Predictive Contouring Control (MPCC) framework (described in D4.2

[11] in detail) in combination with using high-fidelity simulations like IPG CarMaker

integrated with the Delft-Tyre model. This flexible approach allows for the exploration

and validation of different control strategies while isolating potential inaccuracies

from other aspects of the automated driving pipeline. The iterative evaluation process

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 55 of 64

ensures rigorous validation before integration into more complex system

environments. Additionally, MATLAB’s capabilities for generating C++ code streamline

the transition from simulation to real-world testing, reducing potential

implementation errors and enhancing efficiency. Figure 25 illustrates a simulated

scenario within IPG CarMaker and Simulink, demonstrating the controller's ability to

successfully avoid two obstacles while operating at the limit of handling.

Figure 25 An instant of the obstacle avoidance manoeuvre.

Under normal operating conditions, the proposed MPCC [44], [45] tracks the planned

trajectory generated by the motion planner when the vehicle is safely distanced from

obstacles. The primary goal is smooth, precise path tracking that follows the planned

route closely, leveraging MPCC’s predictive capabilities to minim ize deviations and

optimize vehicle dynamics by considering coupled lateral and longitudinal dynamics.

This predictive approach significantly enhances real-time response and path accuracy.

As scenario complexity increases, such as when the planned trajectory brings the

vehicle close to obstacles or when motion plans become infeasible due to

oversimplified predictive models, the MPCC’s dynamic capabilities become critical. In

such cases, it activates a dynamic motion replanning process to ensure obstacle

avoidance while maintaining stability and safety. Real-time trajectory adjustments

allow the vehicle to navigate unexpected challenges, such as sudden changes in road

friction or hazardous conditions, without compromising control and stability. This

adaptability is essential for managing nonlinearities inherent in tyre-road interactions,

especially in constrained friction environments.

3.6.2 Step-by-Step Integration Process

This subsection outlines the procedures to integrate EXP8 into the simulation

environment:

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 56 of 64

1. Implementation of the High-Fidelity Model. The initial step involved

incorporating a high-fidelity vehicle model within the IPG CarMaker simulation

environment. Specific tuning of the Delft-Tyre model’s scaling factor was

performed to accurately capture the reduced friction conditions and dynamic

changes associated with heavy rain, reflecting the unique characteristics of

EXP8. Figure 26 shows how the IPG CarMaker is incorporated into Simulink.

Figure 26 IPG CarMaker integration into Matlab/Simulink.

2. Inclusion of Brake and Steering Dynamics Delays. Brake and steering

dynamics delays were incorporated into the high-fidelity model to realistically

represent response lags inherent in automotive systems. This adjustment was

crucial for developing and testing control algorithms on a more accurate

simulation basis.

3. Implementation of the Controller in ForcesPro. The proposed Model

Predictive Contouring Control framework was implemented using ForcesPro,

an advanced optimization software for high-speed, nonlinear problems [43].

Figure 27 illustrates the integration of ForcesPro within the Simulink simulation

architecture.

4. Validation of the Prediction Model. The prediction model was validated by

comparing its performance against the high-fidelity model within the

simulation environment. This allowed for fine-tuning to ensure that the

prediction model accurately mirrored vehicle behaviour under challenging

conditions.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 57 of 64

Figure 27 Simulation architecture in Matlab/Simulink.

5. Scenario Generation for Experiment 8. A challenging test scenario was

generated for Experiment 8, placing obstacles strategically to push the

controller to the limit of handling. This scenario evaluated the controller’s

performance in critical situations.

3.6.3 Key Challenges and Solutions

Iterative testing and refinement of the controller were conducted to enhance

performance and robustness across different conditions. The results, presented in

Figure 28 and Figure 29, demonstrate the effectiveness of the proposed controller

using the wet tire parameterization. This approach successfully avoids both obstacles,

whereas the baseline controller (shown in red) fails to avoid the second obstacle,

resulting in a collision.

Figure 28 Vehicle trajectories, with the baseline approach represented in red, which results in
a collision, and the proposed approach depicted in blue, successfully avoiding the obstacles .

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 58 of 64

Figure 29 The control inputs, specifically the commanded longitudinal force (left) and the

road wheel angle (right).

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 59 of 64

 Conclusions
The EVENTS project successfully integrated automated driving components into

virtual environments, addressing a wide range of automated driving scenarios,

including urban navigation, highway manoeuvres, interactions with vulnerable road

users (VRUs), and adverse weather conditions. Through a systematic approach

emphasizing modularity, scalability, and consistency, the project ensured effective

testing and evaluation of perception, control, and decision-making systems. This work

provides a robust basis for hybrid and real-world testing in subsequent phases of the

project.

A critical achievement of the project was the ability to replicate real-world challenges

within virtual environments, including dynamic multi-agent interactions, VRU-focused

scenarios, sensor integration, and complex decision-making processes. For instance,

VRU-focused experiments in urban environments tested motion planning systems to

safely navigate around pedestrians. These environments enabled the integration of

advanced perception technologies, such as LiDAR- and radar-based detection,

alongside control and decision-making strategies, including model predictive control

and machine learning-based approaches.

The developments carried out in WP3 (Perception and V2X Communication) and WP4

(Decision-Making and Control) were progressively integrated into the virtual

environments in parallel to their development. This approach created an iterative

testing loop, where components were evaluated and refined continuously as new

functionalities emerged. By enabling early integration and testing, the project

accelerated the development cycle and ensured that modules were compatible and

robust before deployment. Ultimately, this process culminated in setting up the final

virtual environments, which now serve as a foundation for hybrid and real-world

integration in subsequent tasks.

The use of containerization technologies significantly enhanced the scalability and

efficiency of the integration process. Multi-agent systems, which required parallel

execution of processes like perception, control, and communication, benefited from

containerization’s ability to streamline deployment, ensure process isolation, and

simplify troubleshooting. Performance monitoring and automated health-check

mechanisms further ensured reliable execution of complex systems, enabling

consistent and repeatable testing across diverse scenarios.

Machine learning technologies played a pivotal role in tasks such as prediction and

decision-making, particularly in dynamic highway environments. Virtual frameworks

provided structured testing grounds for evaluating reactive systems under conditions

like cut-ins, merges, and other critical interactions. High-fidelity modeling further

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 60 of 64

enabled precise evaluations of control strategies under challenging conditions, such

as nonlinear tire-road interactions on slippery roads.

The combination of open-source frameworks, commercial tools, and tailored virtual

environments allowed the project to address diverse experiment requirements

effectively. Urban navigation scenarios involving VRUs required configurable

environments capable of replicating realistic sensor inputs and dynamic interactions.

Meanwhile, experiments focusing on control strategies under adverse weather relied

on detailed physical models to simulate road conditions with high accuracy. Tailored

virtual environments complemented these tools by addressing unique challenges,

such as integrating self-assessment modules or enabling radar-based perception

systems.

In conclusion, the EVENTS project demonstrated the critical role of simulation

technologies in integrating and testing automated driving components across a variety

of scenarios. The progressive integration of WP3 and WP4 developments, combined

with iterative testing loops, ensured that perception, control, and decision-making

systems were evaluated and refined efficiently throughout the project. This process

culminated in the creation of robust virtual environments, providing a strong

foundation for hybrid and real-world testing. By replicating complex real-world

challenges, including VRU interactions, multi-agent coordination, and control under

adverse conditions, the project offers valuable insights for advancing automated

driving technologies. Virtual environments remain a vital enabler for safe, cost-

effective, and repeatable testing, bridging the gap toward real-world deployment in

subsequent phases of the project.

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 61 of 64

References

[1] EVENTS Project, “EVENTS Deliverable D2.1: User and System Requirements for selected

Use-cases,” 2023.

[2] Autoware Foundation, “Autoware Universe#,” [Online]. Available:

https://autowarefoundation.github.io/autoware.universe/main/. [Accessed 19 12

2024].

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V. Koltun, “CARLA: An open urban

driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning ,

2017.

[4] IPG Automotive, “CarMaker,” [Online]. Available: https://www.ipg-

automotive.com/en/products-solutions/software/carmaker/. [Accessed 19 12 2024].

[5] Motional, “nuPlan,” [Online]. Available: https://www.nuscenes.org/nuplan. [Accessed

19 12 2024].

[6] dSpace, “Automotive Simulation Models (ASM),” [Online]. Available:

https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.

cfm. [Accessed 19 12 2024].

[7] J. Strohbeck, J. Müller, H. A. and M. Buchholz, “DeepSIL: A Software -in-the-Loop

Framework for Evaluating Motion Planning Schemes Using Multiple Trajectory

Prediction Networks,” in 2021 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Prague, Czech Republic, 2021.

[8] Open Robotics, “ROS 2 Documentation,” [Online]. Available:

https://docs.ros.org/en/humble/index.html. [Accessed 19 12 2024].

[9] The autoware foundation, "Autoware Documentation - Planning simulation," [Online].

Available: https://autowarefoundation.github.io/autoware-

documentation/main/tutorials/ad-hoc-simulation/planning-simulation/. [Accessed 30

11 2024].

[10] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical

Review E, vol. 51, p. 4282, 1995.

[11] EVENTS Project, “EVENTS Deliverable D4.2 Motion Planning,” 2024.

[12] The Autoware Foundation, “Autoware Universe Documentation - Avoidance module for

dynamic objects,” [Online]. Available:

https://autowarefoundation.github.io/autoware.universe/main/planning/behavior_pat

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 62 of 64

h_planner/autoware_behavior_path_dynamic_obstacle_avoidance_module/.

[Accessed 30 11 2024].

[13] O. d. Groot, B. Brito, L. Ferranti, D. Gavrila and J. Alonso-Mora, “Scenario-Based

Trajectory Optimization in Uncertain Dynamic Environments,” IEEE Robot. Autom. Lett.,

p. 5389 – 5396, 2021.

[14] ASAM, “ASAM OpenSCENARIO 2.0,” 20 07 2022. [Online]. Available:

https://www.asam.net/static_downloads/public/asam-

openscenario/2.0.0/welcome.html. [Accessed 30 11 2024].

[15] Mathworks, “Roadrunner,” [Online]. Available:

https://www.mathworks.com/products/roadrunner.html. [Accessed 19 12 2024].

[16] Plan Nacional de Ortofotografía Aérea, “Visualizadores y Servicios web - PNOA,”

[Online]. Available: https://pnoa.ign.es/pnoa-imagen/visualizadores-y-servicios-web.

[Accessed 19 12 2024].

[17] ASAM, “ASAM OpenDRIVE®,” [Online]. Available:

https://www.asam.net/standards/detail/opendrive/. [Accessed 19 12 2024].

[18] Docker, “Docker Documentation,” [Online]. Available: https://docs.docker.com/.

[Accessed 19 12 2024].

[19] NVIDIA, “CUDA Toolkit,” [Online]. Available: https://developer.nvidia.com/cuda-toolkit.

[Accessed 19 12 2024].

[20] NVIDIA, “Nvidia container toolkit - Github,” [Online]. Available:

https://github.com/NVIDIA/nvidia-container-toolkit. [Accessed 19 12 2024].

[21] Nvidia, “Github - NVIDIA Container Toolkit,” [Online]. Available:

https://github.com/NVIDIA/nvidia-container-toolkit. [Accessed 30 11 2024].

[22] T. &. L. C. Ylönen, “The Secure Shell (SSH) Transport Layer Protocol,” 2006.

[23] CARLA, “The ROS Bridge package,” [Online]. Available:

https://carla.readthedocs.io/projects/ros-bridge/en/latest/run_ros/. [Accessed 19 12

2024].

[24] Python Software Foundation, “Python 3.10.0,” 4 10 2021. [Online]. Available:

https://www.python.org/downloads/release/python-3100/. [Accessed 19 12 2024].

[25] Ubuntu, “Ubuntu Desktop Guide - Documentation,” [Online]. Available:

https://help.ubuntu.com/22.04/ubuntu-help/index.html. [Accessed 19 12 2024].

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 63 of 64

[26] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, p. 269–271, 1959.

[27] QGIS, “QGIS Documentation,” [Online]. Available:

https://www.qgis.org/resources/hub/. [Accessed 19 12 2024].

[28] [Online]. Available: https://github.com/willfarrell/docker-autoheal. [Accessed 30 11

2024].

[29] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-

Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[30] EVENTS Project, “EVENTS Deliverable D3.2: Perception System and Self -Assessment,”

2024.

[31] T. Griebel, J. Müller, M. Buchholz and K. Dietmayer, “Kalman Filter Meets Subjective

Logic: A Self-Assessing Kalman Filter Using Subjective Logic,” in 2020 IEEE 23rd

International Conference on Information Fusion (FUSION), pp. 1-8, doi:

10.23919/FUSION45008.2020.9190520, Rustenburg, South Africa, 2020.

[32] T. Griebel and e. al., “Self-Assessment for Single-Object Tracking in Clutter Using

Subjective Logic,” in 2022 25th International Conference on Information Fusion

(FUSION), pp. 1-8, doi: 10.23919/FUSION49751.2022.9841294, Linköping, Sweden,

2022.

[33] T. Griebel, J. Heinzler, M. Buchholz and K. Dietmayer, “Online Performance Assessment

of Multi-Sensor Kalman Filters Based on Subjective Logic,” in 2023 26th International

Conference on Information Fusion (FUSION) , Charleston, SC, USA, 2023.

[34] T. Griebel, N. Dehler, A. Scheible, M. Buchholz and K. Dietmayer, “Self -Assessment for

Multi-Object Tracking Based on Subjective Logic,” in 2024 IEEE Intelligent Vehicles

Symposium (IV), Jeju Island, Korea, Republic of, 2024.

[35] T. Griebel, J. Müller, M. Buchholz and K. Dietmayer, "Adaptive Kalman Filtering Based

on Subjective Logic Self-Assessment," in 2024 27th International Conference on

Information Fusion (FUSION), Venice, Italy, 2024.

[36] A. Scheible, T. Griebel and M. Buchholz, "Self-Monitored Clutter Rate Estimation for the

Labeled Multi-Bernoulli Filter," in 2024 27th International Conference on Information

Fusion (FUSION), Venice, Italy, 2024.

[37] EVENTS Project, “EVENTS Deliverable D2.2: Full Stack Architecture & Interfaces,” 2023.

[38] J. Barr, O. Harrald, S. Hiscocks, N. Perree, H. Pritchett and S. e. a. Vidal, “Stone Soup

open source framework for tracking and state estimation: enhancements and

D5.1: System integration in the virtual testing setup

©EVENTS Consortium 2022-2025 Page 64 of 64

applications,” in Signal Processing, Sensor/Information Fusion, and Target Recognition

XXXI (Vol. 12122, pp. 43-59). SPIE., 2022.

[39] F. Poggenhans, J. H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt and M. Mayr,

“Lanelet2: A high-definition map framework for the future of automated driving,” in

2018 21st International Conference on Intelligent Transportation Systems (ITSC) , 2018.

[40] EVENTS Project, “EVENTS Deliverable D4.3: Behavioural decision-making.”.

[41] N. Chowdhri, L. Ferranti, F. Iribarren and B. Shyrokau, “Integrated nonlinear model

predictive control for automated driving,” Control Engineering Practice, p. 104654,

2021.

[42] “TNO Automotive MF-Tyre/MF-Swift 6.2,” Helmond, 2012.

[43] A. Zanelli, A. Domahidi, J. Jerez and M. Morari, “FORCES NLP: An efficient

implementation of interior-point methods for multistage nonlinear nonconvex

programs,” International Journal of Control, vol. 93, no. 1, pp. 13-29, 2020.

[44] A. Bertipaglia, D. Tavernini, U. Montanaro, M. Alirezaei, R. Happee, A. Sorniotti and B.

Shyrokau, “Model Predictive Contouring Control for Vehicle Obstacle Avoidance at the

Limit of Handling Using Torque Vectoring,” in International Conference on Advanced

Intelligent Mechatronics, 2024.

[45] A. Bertipaglia, M. Alirezaei, R. Happee and B. Shyrokau, “Model Predictive Contouring

Control for Vehicle Obstacle Avoidance at the Limit of Handling,” in Advances in

Dynamics of Vehicles on Roads and Tracks III, 2024.

[46] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise, G. Uhm, M.

Gerow, S. Mehta and others, “LGSVL Simulator: A High Fidelity Simulator for

Autonomous Driving,” in 2020 IEEE 23rd International Conference on Intelligent

Transportation Systems (ITSC), 2020.

[47] Openstreetmap, [Online]. Available: https://www.openstreetmap.org/. [Accessed 19 12

2024].

