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Executive Summary 
 

This deliverable highlights the behavioural decision-making strategies, including the 

strategies for identifying the optimal manoeuvre in a given situation. This is the 

outcome of EVENTS task T4.2 on behavioural decision-making for all experiments 

involved in this task. Note that such activities are still work in progress, meaning that 

their full evaluation will be detailed in the deliverables of WP6.  

Not every experiment in the project has the goal of handling the decision-making of 

the vehicle. Therefore, only the ones for which a full navigation system will be 

designed are mentioned here. Considering the current stage of development related 

to the decision-making inside the project, this document contains at least the system 

architectures and the algorithmic designs with the first results depending on each 

experiment.  
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 Introduction 
This document follows the structure used for all EVENTS project deliverables. It begins 

with an introduction outlining the aims of the project and the scope of this document, 

followed by the main body, which, in this deliverable, focuses on behavioural decision-

making strategies. 

1.1 Project aim 

Driving is a challenging task. In our everyday life as drivers, we are facing unexpected 

situations we need to handle in a safe and efficient way. The same is valid for 

Connected and Automated Vehicles (CAVs), which also need to handle these 

situations, to a certain extent, depending on their automation level. The higher the 

automation level is, the higher the expectations for the system to cope with these 

situations are. 

In the context of this project, these unexpected situations where the normal operation 

of the CAV is close to be disrupted (e.g., ODD limit is reached due to traffic changes, 

harsh weather/light conditions, imperfect data, sensor/communication failures, etc.), 

are called “events”. EVENTS is also the acronym of this project. 

Nowadays, CAVs are facing several challenges (e.g., perception in complex urban 

environments, Vulnerable Road Users (VRUs) detection, perception in adverse 

weather and low visibility conditions) that should be overcome to be able to drive 

through these events in a safe and reliable way. 

Within this project scope, and to cover a wide area of scenarios, these kinds of events 

are clustered under three main use cases: a) Interaction with VRUs, b) Non-Standard 

and Unstructured Road Conditions and c) Low Visibility and Adverse Weather 

Conditions. 

Our vision in the EVENTS project is to create a robust and self-resilient perception and 

decision-making system for Automated Vehicles (AVs) to effectively manage different 

kinds of “events” on the horizon. These events result in reaching the AV’s Operational 

Design Domain (ODD) limitations due to the dynamically changing road environment 

(VRUs, obstacles) and/or due to imperfect data (e.g., sensor and communication 

failures). The AV should continue to operate safely under all circumstances. When it 

cannot handle a situation, an improved minimum risk manoeuvre should be put in 

place to ensure safety. 

1.2  Deliverable scope and content of the Document  

In the EVENTS project, WP4 main goals are to design, implement and test in a lab 

environment (or prototype vehicle), the on-board decision-making and control 

algorithms of EVENTS use cases, considering complex traffic and environmental 
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conditions, especially around critical zones, where potential contradictions to existing 

traffic rules can emerge, or the environment is unstructured. This Deliverable (D4.3) 

reports the complete design and algorithms for behavioural decision-making, as 

developed in Task 4.2, as well as the initial results of testing. The complete integration 

of the WP4 modules will be then described in the deliverable D5.2 of WP5. 

In detail, this deliverable highlights the behavioural decision-making strategies, 

including strategies for identifying the optimal manoeuvre in a given situation, as 

implemented in T4.2. Moreover, Behavioural Planning (BP) supports motion planning 

(MP), providing the necessary information to compute the trajectories (MP is 

described in the deliverable D4.2). BP considers both collision risk assessment and 

manoeuvre selection. 

The information does not necessarily flow from the behavioural planner to the motion 

planner. For instance, some MP methods generate motion candidates, which are 

evaluated by the behavioural planner. The information flow is depicted in Figure 1 (as 

derived by D4.1 [1]), where some elements are highlighted, such as occupancy grids 

and the values of time to a collision, that are sent to the MP model or the trajectory 

candidates that can be sent back to the BP. 

The output of the perception models developed in WP3 of the project (e.g., obstacle 

information) serve as input for the BP module. Additionally, further details about the 

surroundings of the vehicle can be obtained from the communication modules, e.g., 

through vehicle-to-everything (V2X)-enabled collaborative (or collective) perception. 

 

Figure 1: Behavioural Planning and Motion planning generic information flow 

The document is structured as follows. After this introduction, Chapter 2 describes the 

research and progress made in the behavioural planning for each of the relevant 

experiments, as well as future works to be included in following deliverables. Finally, 
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Chapter 3 presents the conclusions of the progress mentioned in the previous 

chapters, including a summary of the document and possible lessons learnt. 

 Behavioural decision-making  
In the context of WP4, T4.2 focuses on “behavioural decision-making”. Using the 

inputs provided by WP3 (e.g., tracked objects and their associated forecasted short-

term trajectory, lane marking detection, self-assessment of the perception, etc.) the 

goal is to generate behavioural decisions, that is, to determine the “best action” to 

perform (e.g., brake, lane-keeping / car-following, lane-change, return to the left lane, 

etc.). Figure 2 illustrates the various connections among the tasks within WP4, 

pointing out the inputs and outputs specific to T4.2: 

 

Figure 2: Graphical sketch of the WP4 interactions 

The outputs of the behavioural decision-making module can be used by a human 

driver or an automated system to enhance safety significantly, as well as to increase 

comfort and efficiency and create new solutions for individual transport in cities.  

As mentioned in the deliverable D4.1 [1], the algorithms used in T4.2 leverage state-

of-the-art (SOTA) machine learning (ML) and probabilistic methods, such as [2], [3]. 

While developing such algorithms, it is important to consider various technical 

challenges. Firstly, the perception of an AV is imperfect due to noise, range limitations 

of sensors, as well as occlusions/blocks in the environment. Secondly, in order to 

generate safe trajectories for the ego vehicle, the motion of the other traffic 

participants (TPs) needs to be predicted, by taking into consideration the uncertain 

information of their current state, including hidden variables (such as unknown goals 

and destinations). Thirdly, since the motion of the ego vehicle must be collision-free, 

the probabilistic optimization framework has to meet its kinematic and dynamic 

constraints and follow the traffic rules [4]-[5]. 

In the following chapters, the developed algorithms will be presented experiment by 

experiment (EXP, in short). The only exception is EXP6, “Small object detection at a far 
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range in adverse weather conditions”, led by the APTIV partner, which focuses only 

on the perception aspects. 

2.1 EXP1 

Its title is “Interaction with VRUs in complex urban environment”, and it is under the 

responsibility of TUD. The objective of Experiment 1 (EXP1) is to achieve safe, 

comfortable, and time-efficient automated driving in a complex urban environment 

while engaging with VRUs such as pedestrians and cyclists. 

To handle interactions with VRUs, the behavioral decision-making component is 

tightly coupled with the local motion planners described in D4.2. This chapter details 

the architecture of the decision-making components. 

2.1.1 Architecture 

When interacting with VRUs, the behavioural decisions that the planner can take 

depend on the exact position and predicted intentions of the VRUs. Decisions, 

therefore, do not only pertain to the discrete level (e.g., overtake or brake) but must 

explicitly consider what behaviours are dynamically feasible. For this purpose, the 

motion planner and behavioural decision-making components are closely coupled 

(see Figure 3). It consists of a Guidance Planner that computes high-level guidance 

trajectories with distinct behaviours and the decision-making, after locally optimizing 

trajectories in each behaviour, decides what is the best course of action, given the 

quality of these trajectories. 

 

Figure 3: Behavioural decision-making component architecture of EXP1 

Guidance Planner. The guidance planner is a modified sampling-based planning 

algorithm based on Probabilistic Roadmaps (PRM). In particular, it uses Visibility PRM 

[6], which results in a sparse graph through the environment. To incorporate dynamic 

objects, the environment is considered in 3D, consisting of 2D position (x, y) and time 

(t), allowing the guidance planner to incorporate their expected motion. The guidance 

planner differentiates between different behaviours by analysing the homotopy class 

of the trajectory in the underlying collision-free space. The homotopy class of a 

trajectory captures a set of trajectories that can be continuously transformed into 

each other, which holds for trajectories that pass obstacles on the same side but does 

not hold for trajectories that pass obstacles on opposite sides. Filtering on the 
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homotropy class allows the guidance planner to filter out equivalent behaviours, 

ultimately leading to a set of distinct collision-free behaviours. Figure 4 illustrates how 

the homotopy classes are compared using the H-signature [7] by computing whether 

a loop of trajectories (in blue/red) encloses obstacle motion predictions in 2D space 

with time (3D). 

 

Figure 4: Homotopy classes are compared using the H-signature 

These motion predictions consist of (1) the motion predictions for 0≤t≤T, where T is 

the final time, (2) a line at t=T+ϵ, going outside of the workspace, with ϵ is a small 

value, resulting in different trajectories τ1 and τ2. There, it connects down to (3) and 

moves back to the obstacle at t= -ϵ. In this example, the H-signature is different for 

the blue and red trajectories as they enclose the light blue motion prediction of the 

blue obstacle. 

Decision-Making. It compares each of the refined trajectories. Since the local planners 

described in D4.2, all have the same objective function, the quality of each trajectory 

can be compared by their optimal costs. It is likely that each local planner computes a 

locally optimal solution to the underlying optimization problem, and by comparing the 

optimal costs, the decision-making module can pick the best local optimum, improving 

on the standard planning approach that identifies a single arbitrary local optimum. In 

addition, given that multiple trajectories are optimized jointly, it is more likely that at 

least one trajectory is computed, improving the robustness of the optimization-based 

planner. 



D4.3: Behavioural decision-making  

©EVENTS Consortium 2022-2025                                                                                                           Page 14 of 57 

 

While selecting the lowest-cost solution leads to the theoretically best solution, it is 

possible that this solution rapidly switches between iterations when the environment 

is difficult to estimate accurately. A consistent decision-making scheme is therefore 

also considered. This scheme is facilitated by the guidance planner that, in each 

iteration, reidentifies trajectories to determine if trajectories in previously computed 

homotopy classes have reappeared. By assigning them an identifier, it is possible to 

determine which trajectory the vehicle was previously executing and that trajectory 

preference by lowering its cost by a factor. This makes it more likely that the previously 

followed trajectory is executed again. 

Local Motion Planning consists of multiple MPC planners that each refine one of the 

guidance trajectories, incorporating dynamic constraints and a more detailed 

objective. Its detailed description is in D4.2. 

2.1.2 Algorithmic Approach 

Guidance Planner. The implementation of the guidance planner differs from existing 

Visibility PRM implementations in several key aspects: 

1. It considers not only one but multiple goal positions, allowing it to find a 

trajectory even if its desired position is not reachable (e.g., because another 

vehicle is driving in front of the ego-vehicle). 

2. Homotopy classes of trajectories are compared to distinguish between 

equivalent and distinct trajectories. 

3. The graph in each iteration is propagated to the next iteration by dropping the 

time coordinate of each node by the planning time. 

4. Trajectories are propagated to following iterations by comparing homotopy 

classes of newly computed trajectories against the trajectories from the 

previous iteration. 

These features ultimately allow the guidance planner to maintain a consistent set of 

trajectories with different passing behaviours. The guidance planner must be 

initialized with the vehicle position and a set of goal positions. For urban driving, given 

the reference path [0, 𝑆] → ℝ2 and adaptive reference velocity [0,𝑆] → ℝ, five path 

positions are sampled along the reference path starting from the current path position 

of the vehicle and considering the velocity along the path. For each of these 

longitudinal positions, three lateral goals are added. Similarly, to populate the graph, 

samples are drawn from a uniform distribution over support of Δ = [𝑠0, 𝑠𝑁], that is, 

the path parameter from the current to the expected final path position while 

additionally sampling between [𝑏𝑙(𝑠𝑘),𝑏𝑟(𝑠𝑘)] that are the road boundaries at 𝑠𝑘 , and 

between [0, 𝑁] in time axis. The resulting sampling and graph are shown in Figure 5, 

where goals (circled, orange) and samples (blue) of the guidance planner follow the 

road centerline and consider the road width to determine feasible driving behaviours. 
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If there are more trajectories than the maximum specified number of paths, then the 

trajectories are singled out and move the furthest over time. 

 

 

Figure 5: The goals and samples of the guidance planner 

In the vicinity of VRUs, the guidance planner generally computes more than one 

passing behaviour, as shown in Figure 6, where in the left, it identifies that the blue 

(passes in front) and red (passes behind) trajectories are different. In this case, it finds 

that the blue trajectory requires high acceleration and decides to pass behind the 

pedestrian, as indicated by the yellow (slow speed) vehicle plan. In the right part of 

Figure 6, instead of stopping (blue trajectory), it decides to speed up slightly to pass in 

front indicated by the green (normal speed) trajectory. These two cases illustrate the 

advantages of computing multiple local optima. A more standard pipeline would 

decide, based on limited information, what behaviour the vehicle should follow, and 

the local planner would refine this behaviour. This could easily lead to the worst of the 

two options being executed by the vehicle and would require significant tuning effort 

to make the best decision, while in the proposed method, the decision-making is left 

to the objective function of the MPC. 

 



D4.3: Behavioural decision-making  

©EVENTS Consortium 2022-2025                                                                                                           Page 16 of 57 

 

     

Figure 6: The guidance planner computing more than one trajectories 

Decision-Making. Two decision-making strategies are considered. The first is denoted 

the minimal cost decision and compares the optimal cost of all locally optimized 

trajectories to select the lowest cost option. That is, with 𝐽𝑖
∗ denoting the optimal cost 

of trajectory 𝑖, the trajectory is selected with: 

𝜏𝑖
∗, 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖  𝐽𝑖

∗,    (1) 

This strategy results in the theoretically best solution (with the lowest cost). It is likely 

that this solution is closer to the global optimal solution than a single locally optimized 

trajectory would be. Overall, this improves planner performance. The downside of 

using the minimal cost decision is that over successive iterations of the planner and 

when two plans are of comparable quality, the optimal trajectory may switch rapidly. 

This induces oscillations that are not desirable. Therefore, an alternative decision-

making strategy is proposed, denoted as the consistent decision. To accommodate this 

decision, we note that the homotopy class of trajectories in the previous planner 

iteration may be compared to those of the new trajectories 𝜏𝑖
∗,∀𝑖. When a new 

trajectory exists in the homotopy class of the trajectory that the vehicle is already 

following, then choosing that trajectory should be preferred over other options unless 

the other options are much better. To quantify this in practice, the consistent decision 

is defined as: 

𝜏𝑖
∗, 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖  𝑤𝑖𝐽𝑖

∗,    (2) 

where 𝑤𝑖 = 𝑐𝑖  if this trajectory was previously selected, 0 ≤ 𝑐𝑖 ≤ 1, and 𝑤𝑖 = 1, 

otherwise. That is, the previously selected trajectory is discounted with a factor  

1 − 𝑐𝑖. For 𝑐𝑖 = 0, the previous trajectory is always selected if it exists. For 𝑐𝑖 = 1, the 

lowest cost decision is obtained. Therefore, the value of 𝑐𝑖  can be tuned to encode the 

desired consistency of the planner. In preliminary experiments, it was found that 𝑐𝑖 =

0.25 to be a good starting point. With this value, oscillations are eliminated while the 

planner is still able to switch the passing direction of obstacles when the scenario 

requires it. 
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The guidance planner and decision-making components are implemented in 

ROS2/C++ and Autoware. Its parameters are listed in Table 1.  

Table 1: Planner parameters, preliminary values and their description 

 

Because the samples of the guidance planner are reused in following iterations, only 

a few samples are necessary in each iteration, and the guidance planner is typically 

executed under 5ms. 

2.1.3 Future work 

Future work includes quantitative evaluation of behavioural decision-making in 

randomized simulation scenarios with multiple VRUs via simulations and real-world 

tests. 

2.2 EXP2 

The EXP2 “Re-establish platoon formation after split due to roundabout”, is being led 

by Tecnalia with support from ICCS as a partner. In this scenario, a platoon of AVs 

approaches a roundabout in an urban environment with heavy traffic. As the lead 

vehicle navigates through the roundabout, it faces the challenge of maintaining 

cohesion with the following vehicles in the platoon. However, due to the density and 

flow of external traffic within the roundabout, gaps form between the vehicles, 

causing the platoon to split temporarily. This separation disrupts the intended 

formation and introduces the risk of losing coordination among the platoon members, 

which could compromise the efficiency and safety of the crossing. 

To address this, three decision-making methods based on different technologies are 

proposed in this work. First, a fuzzy logic-based decision-making method is proposed 

for the following vehicles to decide whether they should follow the preceding vehicle 

in the platoon or an outside vehicle inside the roundabout. Second, an MPC-based 

trajectory generator is proposed with obstacle consideration for speed planning. 

Parameter 
Name 

Parameter Value 
(preliminary) 

Description 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 50 Number of samples in each iteration 

𝑃 2 Number of distinct trajectories 

𝑐𝑖 0.25 Factor with which the cost of the previously 
followed trajectory is discounted. 

𝑁 35 Planning horizon 

Δ𝑡, s 0.2 Time between discrete time steps of the prediction 
𝑇, s 7.0 Planning time horizon 

𝑡𝑙𝑜𝑜𝑝, s 0.1 Planning time 

𝑛𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 4 Number of obstacles 
𝐺 5 x 3 Goal grid (longitudinal x lateral) 
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Finally, an AI-based solution is proposed for the generation of the speed profiles 

trained using Reinforcement Learning. 

This case is specific enough not to have been touched on the SOTA previously. 

Therefore, three different solutions are going to be tested to get the desired result. 

2.2.1 Fuzzy logic based selection 

Fuzzy logic-based algorithms aim to mimic human decision-making processes, making 

them well-suited for handling complex driving scenarios like roundabouts. When a 

human driver approaches a roundabout, they must decide whether to continue 

following the vehicle directly ahead or wait for other vehicles already in the 

roundabout. This solution adopts a similar approach, using fuzzy logic to help the AV 

make safe, human-like decisions about when to follow or yield to other vehicles in 

dynamic environments. 

 

Figure 7: Fuzzy logic-based decision architecture 

In Figure 7 a scheme of the decision-making architecture is presented, illustrating how 

the AV uses inputs from platoon vehicles, outside vehicles, and its own state to make 

safe and efficient speed adjustments. The architecture incorporates fuzzy logic to 

handle uncertainties in vehicle detection and positioning, allowing the decision 

module to determine which vehicle to follow. This decision is then passed to the speed 

planner, which adjusts the ego vehicle’s speed profile to maintain safe distances and 

avoid collisions within a roundabout scenario. 

The selection of the variables considered by the Decision-Making algorithm has been 

carried out by considering human reasoning when it comes to making this same 

decision. Vehicles outside the platoon will be considered external vehicles from this 

point onwards. Hence, distance to an external vehicle, self-speed and the external 

vehicle speed are used as input variables. The following fuzzy sets have been defined 

for the aforementioned variables: 

– Distance to the external vehicle, calculated as the Euclidean distance to an 

external vehicle: Very close (VC), Close (C), Far away (FA), Very far away (VFA). 
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– Speed of the controlled vehicle/ Speed of an external vehicle: Slow(S), Medium 

(M), Fast (F). 

Finally, the output of the fuzzy logic algorithm is defined by an action variable. It can 

get two possible values that have been separated in trapezoidal fuzzy sets: “Follow 

opposing vehicle” (FOV) and “Stay in platoon” (SIP). 

 

Table 2: Rules of the fuzzy logic 

Based on these inputs, the algorithm outputs either FOV or SIP, with each output 

corresponding to a floating-point value between 0 and 1. The value indicates the 

confidence or strength of the decision, with values closer to 1 representing a higher 

confidence. When SIP is suggested, the algorithm advises the ego vehicle to continue 

following the vehicle ahead, while FOV suggests that the ego vehicle should follow the 

external vehicle, prioritizing safety in response to the detected distances and speeds. 

The fuzzy rules allow the vehicle to make nuanced and adaptive decisions based on 

the specific conditions in the roundabout. The set of rules has been selected so it is 

consistent with the decisions a human driver would take in this exact scenario.  

Vehicle-to-vehicle (V2V) communication enables the use of Cooperative Adaptive 

Cruise Control (CACC) within the platoon, as it allows vehicles to share detailed 

information about their speed, position, and intentions. However, information 

obtained from external vehicles through perception sensors is limited and lacks the 

depth needed to implement the same cooperative approach. Consequently, for 

following non-platoon vehicles, the system relies on standard Adaptive Cruise Control 

(ACC), which adjusts speed based solely on the perceived distance and relative speed 

of the external vehicle. 

2.2.2 MPC trajectory generator 
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Model Predictive Control (MPC) is arguably the most popular trajectory generation 

method when it comes to AVs. The possibility of optimizing a path based on specific 

vehicle dynamics with physical constraints in a single method is appealing for smooth 

collision-free trajectory generation. With the lack of a higher-level reference 

generator or behavioural planner, this method can be used for continuous decision-

making in an AV architecture. Moreover, it can be considered both, a decision-making 

and path planner module if well designed. 

In this alternative method, an MPC approach is employed to generate a safe and 

efficient trajectory for the ego vehicle as it navigates the roundabout. Unlike 

traditional ACC, which relies primarily on maintaining distance from a preceding 

vehicle, MPC allows for more sophisticated trajectory planning by predicting and 

optimizing over a future time horizon. The MPC generates a speed profile for the ego 

vehicle that adapts to the dynamic conditions within the roundabout, ensuring 

smooth entry, navigation, and exit while maintaining safe distances from both platoon 

and non-platoon vehicles (Figure 8). 

 

Figure 8: EXP2 architecture 

A key advantage of this MPC-based approach is its ability to incorporate the predicted 

trajectories of surrounding obstacles. By forecasting the movements of nearby 

vehicles, the MPC can adjust the ego vehicle’s speed and path to proactively avoid 

potential collisions. This predictive aspect is crucial in a roundabout scenario, where 

vehicles may merge, exit, or change lanes unpredictably.  

As seen in several works [7]-[8], the model used for the MPC planning is a kinematic 

model of a two-axle vehicle with a displaced control point. Since one of the objectives 

of the MPC is to create smooth trajectories and speed profiles the following states and 

inputs are used: 

 �̅� = {𝑥, 𝑦, 𝜃, 𝑣, 𝛿};  �̅� = {𝑎, �̇�} (1) 
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Where, 𝑥, 𝑦 and 𝜃 are the positions and orientation in the frame of the initial position, 

𝑣 is the longitudinal speed and 𝛿 is the road wheel angle represented in the center of 

the front axle. The inputs of the model are the longitudinal acceleration (𝑎) and the 

steering rate (�̇�).  

The first derivate of the state can be represented by the following equations: 

 

�̇̅� =

{
 
 

 
 
𝑣 cos(𝜃 + 𝛽)

𝑣 sin(𝜃 + 𝛽)

𝑣 cos(𝛽)
tan(𝛿)

𝐿
𝑎
�̇�

 

 

(2) 

Where, L is the wheelbase of the vehicle and 𝛽 the sideslip angle is calculated as: 

 
𝛽 = atan (

𝑙𝑟 tan(𝛿)

𝐿
) (3) 

Where, lr is the distance from the rear axle to the center of the mass of the vehicle. 

The optimization problem can be defined in the following way: 

min 𝐽(�̅�, �̅�) =  ∫ 𝑤𝑑𝑖𝑠𝑡𝑑𝑟𝑒𝑓
2

𝐻

𝑖=0

+𝑤𝑜𝑟𝑖𝑒𝑛𝑡𝜃𝑑𝑖𝑓

+𝑤𝑠𝑡𝑒𝑒𝑟𝛿
2 + 𝑤𝑎𝑐𝑐𝑎

2 +𝑤𝑠𝑡𝑟𝑎𝑡𝑒 �̇�
2

+ ∑
𝑤𝑜𝑏𝑠𝑡
𝑑𝑜𝑏𝑠𝑡

𝑁

𝑗=0

 

(4) 

 

s.t. 𝛿min < 𝛿 < 𝛿max
0 < 𝑣 < 𝑣max

𝑎min < 𝑎 < 𝑎max

 

 

(5) 

The cost function tries to minimize the distance and orientation to the reference 

trajectory (𝑑𝑟𝑒𝑓 , 𝜃𝑑𝑖𝑓 ), generated by the past positions and prediction of the platoon 

leader), the road wheel angle change (𝛿) and the input variation (𝑎, �̇�), which should 

lead to smoother and more comfortable paths.  

In MPC trajectory generation, obstacles are typically represented using Artificial 

Potential Fields (APF) if the objective is to avoid them [11],[10]. However, in this 

particular case, the ego vehicle should keep driving behind the obstacles. Therefore, 

obstacle consideration is added to the cost function through the last element, 

rewarding the vehicle for keeping a safe distance from them. 

Specific parameter values, such as prediction horizon, weights or constraint values, 

will be specified in a future deliverable for the best result obtained with this method. 
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2.2.3 Reinforcement learning for speed planner 

Automated driving is an extremely complex task encompassing a wide variety of 

challenges, from motion planning to individual decision-making. These challenges are 

often addressed from a traditional technical perspective, e.g., rule-based methods. 

However, Reinforcement Learning (RL), powered by deep neural networks, has been 

applied to efficiently solve these challenges over the past decades. In what follows, a 

thorough analysis of the SOTA RL techniques applied to adverse traffic scenarios (e.g., 

intersections, roundabouts) is performed, along with a review of some works related 

to platooning orchestration. 

RL has been used to approach various scenarios within the scope of automated 

driving, with path planning and decision-making being two of the main focuses within 

academia. While the former determines the path the vehicle should follow in the next 

few seconds, the latter allows for decisions on whether to accelerate, decelerate, or 

stop to avoid collisions. 

RL can be defined as a machine learning technique that defines how decisions (actions, 

A) made by agents guide them toward achieving a specific goal. To accomplish this, 

agents are provided with and trained on observations, which encode the current state 

of the simulated scenario, and rewards (R), which measure the appropriateness of 

taking action given the current environment configuration (state, S), as shown in 

Figure 9: 

 

Figure 9: Traditional RL agent/environment interaction 

Under the scope of RL, there are plenty of algorithms and configurations suited for 

solving a wide variety of automated driving scenarios, which will not be covered in this 

report; however, readers interested in this subject are encouraged to read this survey 

[9]. In [9], the authors provide a review of Deep RL techniques addressing the 

challenge of automated driving at unsignalized intersections, such as roundabouts and 

4-way intersections. Key issues include predicting the intentions of other drivers and 

planning movements in conditions of uncertainty, both of which are crucial for safe 

navigation. To address these challenges, cooperative, heuristic, and game-theory-

based methods are explored. 
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Automated driving at intersections (signalized or not) provides an excellent scenario 

for RL due to their inherent uncertainty. Specifically, in the case of roundabouts, the 

main concern of the experimentation proposed in this document, the community has 

focused its efforts on decision-making and controlling agents when approaching a 

roundabout. In [5], this problem is approached by proposing a Q-Learning algorithm 

to train an AV agent. Using the CARLA simulation environment, the algorithm is 

trained and tested in traffic and non-traffic scenarios. Experimental results show that 

the Q-Learning-trained agent successfully learns smooth and efficient roundabout 

manoeuvres. The action space includes vehicle control commands: steering angle, 

acceleration, braking, and handbrake activation, while the observation space 

comprises vehicular data such as GPS position, velocity components, distance to the 

next GPS point, and binary indicators for lanes to the left or right of the vehicle.  

Usually, mimicking human decisions can help RL systems learn the right policy under 

extreme circumstances. The work conducted in [12] introduces a decision-making 

system based on imitation learning to help AVs safely and efficiently merge into 

roundabouts. The system captures observations and employs deep policy networks, 

trained with human expert data (GO and WAIT signals), which are used as reward 

scalation for the agent when it takes the same action as the human expert. The 

method is finally evaluated against traditional supervised learning models (Support 

Vector Machines and k-Nearest Neighbours) and other deep learning methods, 

showing superior decision accuracy. However, these algorithms lack adaptability 

when the action space shifts from a discrete action set to a continuous action space, 

such as velocity or yaw angles, which are used in [13] to make AVs learn how to turn 

left securely at unmarked intersections. The training is conducted using Soft Actor -

Critic (SAC), a model-free off-policy RL algorithm, which generates reference speed 

and yaw angle signals focused on safety and collision avoidance, while the MPC system 

optimizes these signals within vehicle dynamics constraints. Other studies [14] expand 

the action space and the actor-critic-based algorithm to allow agents to decide 

whether they should change lanes. 

However, complexities may not only arise from the curvature of the roundabout or 

the absence of signalling but also from traffic flows, different vehicle structures (e.g., 

tractor-trailer vehicle [15]) or vehicle compositions (e.g., platooning). Maintaining 

automated platooning requires precise, reliable sensing to track vehicle positions and 

respond to environmental factors like rain or fog. Real-time decision-making is 

essential, as control algorithms must rapidly process information and adjust spacing 

to ensure stability. Balancing driving efficiency with safety is crucial, and the system 

must adapt to varied traffic and road conditions.  

A platoon can be guided by an RL system, as done in [16], where the position of each 

vehicle and traffic density is analysed to reduce traffic congestion and CO2 emissions 
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through the routes derived from the proposed methodology. A similar approach is 

presented in [13], where cooperative driving strategies are used to generate offline 

collision-free trajectories in a roundabout, while a real-time cooperative decision-

making and motion planning method using Adaptive Monte Carlo Tree Search 

(AMCTS) is employed for movement coordination. 

More elaborate solutions can be found in [17] and [18]. Starting with [17], the RL 

algorithm used in this work (i.e., comPPO) enables each agent to adjust its acceleration 

to reduce fuel consumption based on the shared platoon state, which includes a 

shared set of variables such as traffic state, speed differences, vehicle speed, gap 

between vehicles, and the ordinal number of the vehicle. Next, the work in [18] 

introduces the FH-DDPG-SS (Finite-Horizon DDPG with Sweeping through reduced 

state space using Stationary policy approximation) algorithm, which enhances the 

efficiency of reinforcement learning for platoon control. One key innovation is the 

transfer of network weights over time, where weights from networks trained in later 

time steps are transferred to earlier ones. This technique improves sampling efficiency 

by leveraging the knowledge gained from more advanced stages of training to 

accelerate the learning process at the beginning, thus optimizing the overall training 

and performance of the system. 

In summary, the capabilities and potential of RL in the field of automated driving are 

undeniable. Its strengths enable it to address problems ranging from simpler tasks 

using small neural networks to complex scenarios requiring multi-agent cooperation. 

It is important to note that, while many RL studies focus on the application of RL 

methods to solve issues related to automated driving in roundabouts or other 

intersections, a few research has been conducted on how to restore the formation of 

a vehicle platoon when only a subset of the vehicles has successfully entered the 

roundabout. The next section will detail the RL system designed to tackle this 

challenge. 

2.2.4 Reinforcement Learning Solution 

In the proposed scenario, as illustrated in Figure 10, one of the vehicles in the platoon 

faces the challenge of entering a roundabout at the optimal moment. The complexity 

arises from the presence of a third vehicle, referred to as Vehicle X, which obstructs 

Vehicle 3's entry into the roundabout, creating a dynamic and constrained decision-

making problem. 
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Figure 10: Proposed scenario in EXP2 

To address this, the observation space must first be clearly defined. Since the 

environment is considered fully observable, the observation space can be defined as: 

 {(𝑝𝑖 ,𝑣𝑖 , 𝑜𝑖 , 𝜀, 𝛿𝑖,𝑗) | 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 } 

 

(6) 

where 𝑁 is the number of vehicles (i.e. 4 in this experiment) and  𝑝𝑖 , 𝑣𝑖 ,𝑜𝑖 , 𝜀 𝑎𝑛𝑑 𝛿𝑖,𝑗 

represent the position of the whole set of vehicles, their velocities, identification (1,2,3 

or X), controlled vehicle’s lateral error and the distances between any pairs of cars, 

respectively. 

The primary objective of this experiment is to regulate the speed of the green vehicle 

(the action), which can be modelled as: 

 𝑎 ∈  ℝ(0, 1), (7) 
 

allowing it to seamlessly rejoin the platoon and reach its intended destination. Note 

that this action is scaled to the maximum and minimum speed conditions defined in 

CARLA. This action space, even if continuous in nature could be modelled as a discrete 

space and solved using traditional RL algorithms, as Deep Q-Network (DQN), which 

can be considered a baseline to contrast with Proximal Policy Optimization (PPO), an 

SOTA, an on-policy algorithm renowned for its sample efficiency and model-free 

architecture. 

PPO operates by collecting sufficient experience from the environment to populate a 

buffer, leveraging this data to iteratively refine its policy. After each learning iteration, 

the buffer is refilled with new experiences to ensure continuous improvement. PPO 

adopts an Actor-Critic framework, wherein the critic evaluates the value function for 

a given state. This evaluation informs updates to the actor, which is responsible for 

determining the optimal actions at each timestep. This iterative process enables PPO 

to effectively navigate complex, dynamic environments such as the one described 

here. 
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One of the main limitations of PPO is the requirement for a stable connection to the 

environment. In our experience, working with CARLA and RL presents significant 

challenges, not only in terms of simulator stability but also in the achievable sample 

rate, which can delay training. CARLA offers some features, such as the ability to run 

the simulator offscreen, however, these do not fully mitigate the issue. 

Another important aspect of PPO is the reward function, which evaluates the quality 

of the decisions made by the agent. To enhance PPO's stability and accelerate its 

training, all rewards are normalized. The logic encoded in the reward function is 

summarized in the following table: 

Event Reward 

Reach Goal +++ 
Entering roundabout ++ 
Correct position in the platoon + 
Following the platoon + 
Collision detected -- 
Staying still - 

Table 3: Reward decomposition 

A well-designed reward function is essential for the algorithm to learn effectively, 

here, each event in Error! Reference source not found. results in a variation of the r

eward obtained, representing the effect with the amount of positive (+) or negative (-

) reward. Next, a brief description of each entry is provided: 

• Reach goal (+++): Vehicle numbered as 3 (v3) is near the destination along with 
the other platoon members.  

• Entering roundabout (++): Vehicle numbered as v3 reaches and passes away 
the roundabout entrance. 

• Correct position in the platoon (+): 𝑑3,1 and 𝑑3,2 situates V3 behind V1 and V2. 

We compute this by means of the orientation of V3 and the distances in X and 

Y between all vehicles. This reward will only work if vehicle X is not in-between 

the rest of vehicles.   

• Following the platoon (+):  Keeping a minimum gap in the platoon and similar 

velocities returns a small positive reward. This encourages V3 to keep 

distances with the rest of the vehicles in the platoon. 

• Collision detected (--): CARLA informs of a collision occurring in the simulation 

between vehicle 3 and any other element triggering collisions. 

• Staying still (-):  If at any point of the simulation the vehicle decides to stop a 

small negative reward is returned. This way, the vehicle is encouraged to 

move, and only stop if the situation demands it. 

The source code for this project is developed in Python, one of the most popular 

programming languages for Artificial Intelligence development, especially in the 

context of this project, as CARLA provides an API to work with Python. Additionally, 
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specific tools for RL development are utilized. Among them, Stable-Baselines3 should 

be noted, since it offers baseline implementations for many SOTA RL algorithms, 

including the PPO implementation adopted for this project. Some of the key tuned 

hyperparameters are listed below in Table 4: 

Variable Value 
Normalize true 
N_envs 1 
Batch_size 32 
N_steps 512 
Gamma 0.99 
Learning_rate 5e-5 
N_epochs 50 
Vf_coef 0.871923 
Policy MlpPolicy 

Table 4: Key hyperparameters and their values 

• Normalize: As mentioned above, the rewards are normalized for stability on 

training. 

• N_envs: The number of environments trained in parallel, we can only connect 

to 1 CARLA server. 

• Batch_size: The number of training samples processed at once during each 

gradient update 

• N_steps: The number of timesteps (or steps) to collect in each environment 

before performing a single update. 

• Gamma: The discount factor used to compute the present value of future 

rewards. 

• Learning_rate: The step size used in the optimization process. 

• N_epochs: The number of times the entire batch of data is passed through the 

model during training. 

• Vf_coef: The coefficient for the value function loss, which controls how much 

the value function (used by the critic) impacts the total loss function. 

• Policy: The network type used for the actor and critic (i.e. Multilayer 

Perceptron). For this first approach we use the default networks’ configuration 

for Actor and Critic. 

In summary, the proposed RL solution aims to optimize the entry of a vehicle into a 

roundabout within a platoon, taking in account the obstacles (i.e. other vehicles) 

inside the roundabout. Using PPO, the system can iteratively improve its decision-

making process. Also, carefully designing the reward function is crucial to ensure the 

agent learns adequately. 

2.3 EXP3 

EXP3 title is “Self-assessment and reliability of perception data with complementary 

V2X data in complex urban environments”, under the responsibility of UULM partner. 
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It aims at demonstrating safe automated driving in complex urban environments with 

occlusion.  

This will be achieved through the usage of self-assessment methods in the onboard 

perception system, which will produce reliable assessment outputs. Additionally, V2X 

data from an infrastructure pilot site will be utilized. More information about EXP3 

can be found in Deliverable D2.1 "User and System Requirements for Selected Use 

Cases" Error! Reference source not found.. In the context of EXP3, the perception s

ystem is not the only essential component, but behavioural decision-making and 

trajectory planning are also crucial. Behavioural decision-making responds to various 

influences, such as the environment or internal states, and can control the vehicle's 

actions. The trajectory planning calculates the vehicle's path based on the output of 

the behavioural decision-making. In this section, the focus is set on the behavioural 

decision-making component in the context of EXP3. As the concrete scenario for 

behavioural decision-making, the vehicle turns right at the intersection (see 

Deliverable D2.1 for an illustration of the intersection) and merges without hindering 

other traffic participants. The difficulty in this scenario is that the view to the left side 

is impeded, and the vehicle cannot see if another vehicle is approaching. The data 

from an infrastructure pilot site sent to the vehicle with V2X communication is used 

to resolve the occlusion. The decision if the vehicle should enter the intersection and 

merge between the other vehicles is taken with the behavioural decision-making 

presented in this section. 

2.3.1 Architecture 

The data flow and components in the overall architecture of EXP3 are first presented 

in Deliverable D2.2 "Full Stack Architecture & Interfaces" Error! Reference source not f

ound.. The architecture is visualized in Error! Reference source not found., which is a 

modification from Error! Reference source not found., and in which the tracking and 

the CPMs deliver the data for behavioural decision-making and trajectory planning. 

The processing pipeline gets raw sensor data from the vehicle sensors, such as camera, 

LiDAR, or RADAR sensors. The sensor data is pre-processed on the ego vehicle. The 

pre-processing could be a rectification for the camera data or an ego-motion 

compensation for the LiDAR data. The pre-processed data is used to extract single 

objects, wherefore neural network object detection models are used. The detections 

of the sensors are associated and filtered over time with a tracking algorithm. A 

novelty of the tracking approach used in the onboard tracking is the integrated self-

assessment procedure, which is developed in WP3 of the project. The output of the 

onboard tracking algorithm, containing a track list and a self-assessment score, is given 

to the fusion module. Here, the onboard track list is fused with data delivered by 

Collective Perception Messages (CPMs) from the external roadside units (RSUs). In the 

track list fusion, the onboard track list is fused with the infrastructure track list to a 
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fused track list. The fusion applies the self-assessment score to resolve objects 

detected by both sensor suits. The additional information is a track list that contains 

the data for the objects detected by the infrastructure and is sent over a V2X 

communication in the form of a CPM to the vehicle. In contrast to the track list 

generated onboard, the object list from the infrastructure does not contain a self-

assessment score. The fused onboard information and the infrastructure data 

determine the vehicle's behaviour in behavioural decision-making, where the self-

assessment score and the infrastructure’s availability determine the behaviour .  

 

Figure 11: Architecture of EXP3 

On top of the behavioural decision-making, the trajectory planning step is performed, 

which uses the fused track list and the planned behaviour to plan the trajectories. 

2.3.2 Algorithmic Approach 

The algorithmic approach of UULM partner for EXP3 is described in this chapter, with 

a first section dedicated to the state-of-the-art (SOTA) and the other two sections to 

the real developed algorithms. 

State of the Art 

Automated driving moves the whole driving responsibility from the driver to the 

vehicle. This means that the vehicle has to make decisions like passing another vehicle 

Error! Reference source not found. or driving into an intersection Error! Reference so

urce not found.. To model the human-like behaviour of the vehicle, different driver 

models are available, like the intelligent driver model [23] or Error! Reference source n

ot found.. For lane changes on highways, a behavioural decision-making model is 

proposed in MOBIL Error! Reference source not found., relying only on the a

ccelerations of the different surrounding vehicles and the ego vehicle. A more 
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advanced approach for behavioural decision-making is POMDP Error! Reference s

ource not found., which uses Markov decision processes in an environment only 

partially observable. A possible way to solve the POMDP is investigated by González 

et al. Error! Reference source not found., using a Monte-Carlo-based algorithm Error! Re

ference source not found. to determine the vehicle’s behaviour. Furthermore, in this 

approach Error! Reference source not found., the other vehicles’ physical state and 

the lane-changing intentions of the other vehicles can be considered, wherefore it is 

possible to imitate human-like behaviour for highway scenarios. Lenz et al. Error! 

Reference source not found. also work on solving the highway scenario and, therefore, 

apply a Monte-Carlo tree search to the decision-making problem formulated as a 

Markov decision process. Another method for behaviour decision-making Error! R

eference source not found. creates a geometric model with a high-precision map and 

estimates the motion of other vehicles with a Dynamic Bayesian network Error! R

eference source not found.. With the former model and the motion, the behaviour 

decision-making is done with a POMDP algorithm. In the real world, the POMDP 

algorithm can be computationally intractable. To overcome this limitation, Zhang et 

al. Error! Reference source not found. introduce an efficient uncertainty-aware d

ecision-making framework, which is real-time capable and divided into two parts. 

First, a domain-specific closed-loop policy tree is created, which determines the 

behaviour of the ego-vehicle. Second, conditional-focused branching identifies 

potentially dangerous situations with other vehicles, which are excluded from the 

possible behaviour. Another possible scenario in automated driving is passing a truck 

on a single-lane road. Here, the passing vehicle must pass a gap between the 

oncoming vehicles. Zhang et al. Error! Reference source not found. use a forward h

idden set to include all possible locations of a hidden car in behaviour planning and 

extrapolate the forward hidden set to the future. The car's behaviour plan is safe 

because of a viable fallback strategy as long as the future forward hidden set does not 

overlap with the danger zone of the ego vehicle. For behaviour decision-making, a 

state machine can also be applied Error! Reference source not found. Error! Reference so

urce not found.. Noh and Kyounghwan Error! Reference source not found. apply in the 

first step a situation assessment, which includes all surrounding vehicles and assesses 

the possibility of collisions to avoid them. The situation assessment is determined with 

Bayesian networks and is propagated to the strategy decision component. The 

strategy decision component is realized with a state machine and determines a goal-

directed and collision-free behaviour. Besides normal state machines, hierarchical 

state machines can be used for behavioural decision-making Error! Reference source 

not found., which can have several states in parallel. While the state machine limits 

the possible manoeuvres, Hubmann et al. Error! Reference source not found. propose 

a non-rule-based decision-making algorithm that can decide between an infinite 

number of possible manoeuvres. It is applicable in different scenarios, e.g., cruise 

control or decision-making at traffic lights, and is based on the A* algorithm Error! 
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Reference source not found.. Together with behavioural decision-making, the 

trajectory can be determined so that both tasks benefit from each other Error! 

Reference source not found.. Ma et al. Error! Reference source not found. detect 

violations of dynamic and static traffic rules in real-time with a four-stage algorithm, 

which predicts with the MPC algorithm Error! Reference source not found. a new 

trajectory that does not violate any traffic rule. 

Behavioural Decision-Making 

The decision-finding process of the overall behavioural decision-making is realized as 

a state machine in Error! Reference source not found.. At the start, the state machine i

s initialized to the Drive Mode, where the vehicle is limited by the standard traffic 

regulations and the surrounding environment in its behaviour. The vehicle’s start is 

only possible if the self-assessment (SA) score is above the threshold thr. If the SA is 

below thr, the state machine changes the state from the Drive Mode into the Fallback 

Mode. This happens because, with a low SA score, the vehicle's own environmental 

perception is inaccurate, and therefore, it must be planned with unforeseeable 

environmental conditions. Changing the state from the Fallback Mode back to the  

Drive Mode is only possible after an expert check. The expert check is necessary 

because the worse SA score can indicate a serious issue like a miss-calibrated sensor, 

which can lead to dangerous situations. To lower the effort for the expert check, a 

remote check could also be possible. Notable is that the behaviour in both modes can 

differ between various situations. The vehicle can stop from both states.

 

Figure 12: State machine diagram of the behavioural decision-making 

The following sections describe the behaviour at an intersection with infrastructure 

sensors and a road segment without infrastructure support.  

Behavioural Decision-Making with Infrastructure Sensors 

If external infrastructure data is available, the behavioural decision-making gets a 

fused track list, which contains information from both the onboard track list and the 

track list from the infrastructure. Error! Reference source not found. gives a s

chematic overview of the vehicle's behaviour at the intersection. A high SA score 

means that the vehicle is in the Drive Mode. In this mode, the vehicle can enter the 
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intersection without stopping when no other vehicle is arriving (possible if the 

database is reliable). When an arriving vehicle is detected, the ego vehicle must stop 

at the intersection and wait until the other vehicle passes.   

If the SA score is below thr, the vehicle only relies on external data, no data from the 

onboard perception is used, and the ego vehicle enters the Fallback Mode. This means 

that the vehicle plans to stop because after leaving the intersection area, no external 

data is available, and therefore, driving solely with the external data is not possible. 

For stopping the vehicle, safe stop points are defined in the intersection area so that 

the vehicle can use the external data to reach a safe state. The location of the defined 

safe points can be seen in Figure 14. One safe stop point is before the vehicle enters 

the intersection, and another is after the vehicle enters the intersection. Which of the 

stop points is used depends on how far the vehicle has entered the intersection before 

the SA score falls below thr. Using external information has the advantage that even 

with an uncertain ego perception, the vehicle does not block the intersection but can 

leave the dangerous intersection zone in a safe manner.  

 

Figure 13: Schematic overview of the behavioural decision-making at an intersection with 
infrastructure sensors 
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Figure 14: Visualization of the dangerous area and the safe stop point of the intersection  

After reaching the safe stop point, a human driver has enough time to oversee the 

situation and can hand over the driving task. 

Behavioural Decision-Making Without Infrastructure 

While the former behaviour requires additional external data, the vehicle behaves 

differently if no additional data from infrastructure is available, as visualized in Figure 

15. In the case the SA score is above thr, the vehicle operates in the normal driving 

mode. This means the vehicle operates only with the standard traffic rules and the 

environmental limitations as restrictions. An SA score below thr changes this 

behaviour because the onboard perception can have errors that can lead to dangerous 

situations. Therefore, the vehicle enters the safe mode, which means in this condition 

that the vehicle drives slower and holds a higher safety distance to the leading vehicle. 

Reducing the velocity from 50 km/h allowed in urban areas to only 30 km/h and 

doubling the safety distance to the leading vehicle gives more time to react to 

unexpected situations, which can happen with an uncertain ego perception.  
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Figure 15: Schematic overview of the behavioural decision-making without infrastructure 
sensors 

Finally, the diver is informed about the uncertain ego perception so that he can 

prepare for a potential takeover. 

2.3.3 Conclusion and Future Work 

The behavioural decision-making presented in this section is implemented as a state 

machine, which divides between the Drive Mode and the Fallback Mode. In the Drive 

Mode, the vehicle behaves according to the current traffic regulations and the 

surrounding environment. In the Fallback Mode, some issues with the vehicle’s 

perception are detected, and the vehicle adapts its behaviour. So, without any 

infrastructure support the vehicle reduces the velocity and increases the safety 

distance. With infrastructure support, the automated vehicle determines a safe stop 

point and stops at the stop point. This prevents the intersection from being blocked 

by an automated vehicle with a malfunction. 

The behavioural decision-making will be integrated into the ROS2 software stack of 

Ulm University’s test vehicle, between the fusion of the different track lists and the 

trajectory planning in the scope of the project's WP5. In this context, the whole 

approach will also be tested in simulations and real-world tests. 

2.4 EXP4 

EXP4 is carried out by HITACHI, Tecnalia and WMG partners and its title is “Decision 

making for motion planning when faced with roadworks, unmarked lanes and narrow 

roads with assistance from perception self-assessment”. The objective of the EXP4 is 

to navigate in an unstructured road wide enough for at least two vehicles driving in 

parallel and with occasional disturbances, like roadworks. The challenge regarding 

behavioural planning is the selection of a collision free path within the boundaries of 

the roads in real time. 
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2.4.1 Architecture 

Motion planning on unstructured roads for automated vehicles presents a set of 

complex challenges due to the lack of well-defined lane markings, traffic signs, and 

other standard infrastructure. Unlike structured environments, where clear road 

geometry and traffic rules guide decision-making, unstructured roads require the 

vehicle to rely heavily on perception and contextual understanding. This uncertainty 

forces motion planners to operate with incomplete or noisy data, making real-time 

decision-making and trajectory generation significantly more challenging. 

A common approach for both, behavioural and motion planning on unstructured 

roads is to generate a simple reference trajectory and then run a MPC to apply vehicle 

dynamic constraints [42]. However, most of the works assume a stable knowledge of 

the lane edges. In this work a novel reference generation with Bezier curve smoothing 

is proposed alongside an MPC for optimization for it to be tested with real world data.  

 

Figure 16: Behavioural planning architecture 

Error! Reference source not found. shows the data flow of this method. First, a rough t

rajectory is calculated using the lane boundaries as reference. After that a smoothing 

is applied to that path to be more feasible using 5th order Bezier curves. The output 

needs to be discretized to match the step time used in the MPC and the relative 

orientation added. Finally, the result will be used by the MPC as the state reference in 

the cost function. 

2.4.2 Algorithmic approach 

In this case the road where the data has been recorded is two lanes wide. One of the 

premises in this experiment is that the vehicle should stay on the right lane. Therefore, 

the points of the first rough lane meet the following condition: 

 

{
𝑑𝑟𝑖𝑔ℎ𝑡 =

𝑤𝐿
4
, 𝑖𝑓 𝑤𝐿 > 4

𝑑𝑟𝑖𝑔ℎ𝑡 =
𝑊𝐿
2
, 𝑖𝑓 𝑤𝐿 < 4

 

 

(8) 

where 𝑑𝑟𝑖𝑔ℎ𝑡  is the distance of the point to the right edge and 𝑤𝐿 is the road width.  
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This means the reference will stay closer to the right unless the road shortens due to 

roadworks. The calculation of the lane width presents several problems. To start, the 

number of points in each edge might not be the same, so it is not possible to calculate 

the width by Euclidean distance between points with the same index. First, we get the 

bisector of the first two points of the borders. For each point in the array, we calculate 

the distance to the borders by calculating the minimum distance to each segment of 

two consecutive points in the borders. The width of the lane for a certain point is the 

sum of the distances to the right and left border. This approximation is considered 

good enough, since no sharp turns are contemplated in the EXP4. Either way, a 

maximum length of 20m is considered in the trajectory generation. However, these 

points alone often result in sharp angles or irregularities, which are unsuitable for 

many applications, especially in automated vehicle navigation or robotics. 

To address this, Bézier splines are employed. Bézier splines are mathematical 

constructs that allow smooth interpolation between points by leveraging control 

points. After segmenting the path, a quintic Bézier curve is applied to the first 

segment. The process is repeated for all path segments, ensuring smooth transitions 

at junctions by maintaining curvature continuity, where the first or second derivatives 

of adjacent curves match. An example of the curve is provided in Figure 17. 

 

Figure 17: Bezier spline trajectory generation for unstructured roads 

The orientation for each point is calculated using the vector between that point and 

the next in the path, except for the last, which has the same orientation as the 

previous point. 
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For the MPC a well-known kinematic model has been chosen. The state of the vehicle 

is represented by three variables, position in cartesian coordinates (𝑥, 𝑦) and heading 

orientation relative to the initial state (𝜃). The derivation of the state is represented 

in the following equation: 

 

�̇̅� =

{
 

 
𝑣 cos(𝜃 + 𝛽)

𝑣 sin(𝜃 + 𝛽)

𝑣 cos(𝛽)
tan(𝛿)

𝐿

 

 

(9) 

Where, parameter L is the wheelbase of the vehicle and 𝛽 the sideslip angle is 

calculated by the following formula, where lr is the distance from the rear axle to the 

center of the mass of the vehicle: 

 
𝛽 = atan (

𝑙𝑟 tan(𝛿)

𝐿
) (10) 

 

The optimization problem can be described as: 

𝑚𝑖𝑛 (𝐽(�̅�, �̅�)) =  ∫ 𝑤𝑑𝑖𝑠𝑡𝑑𝑟𝑒𝑓
2

𝐻

𝑖=0

+𝑤𝑜𝑟𝑖𝑒𝑛𝑡𝜃𝑑𝑖𝑓 +𝑤𝑠𝑡𝑒𝑒𝑟𝛿
2 + 𝑤𝑎𝑐𝑐𝑣

2 
(11) 

 

s.t. 𝛿𝑚𝑖𝑛 < 𝛿 < 𝛿max
0 < 𝑣 < 𝑣max
𝑑𝑙𝑒𝑓𝑡 < 𝑤𝐿
𝑑𝑟𝑖𝑔ℎ𝑡 < 𝑤𝐿

 

 

(12) 

where distance (𝑑𝑟𝑒𝑓 ) and orientation (𝜃𝑑𝑖𝑓) to reference is minimized. Heavy change 

in both inputs (𝛿 and 𝑣) are punished too. 

State constraints (12) are used to consider the vehicle’s physical restrictions, as well 

as road restriction, imposing distance to the left and right borders (𝑑𝑙𝑒𝑓𝑡 , 𝑑𝑟𝑖𝑔ℎ𝑡) not 

to be above the lane width (𝑤𝐿). 

2.5 EXP7 

EXP7 “Localization/perception self-assessment for advanced ACC and other vehicles’ 

behavior prediction under adverse weather or adverse road conditions”, leaded by 

ICCS partner, has the goas to develop and evaluate a novel multi-agent motion 

prediction module, which predicts both the intention of vehicular and VRU traffic 

participants, as well as their short- and long-range trajectories.  



D4.3: Behavioural decision-making  

©EVENTS Consortium 2022-2025                                                                                                           Page 38 of 57 

 

2.5.1 Manoeuvre Classification 

ICCS has developed a manoeuvre classification algorithm for AVs equipped with RGB 

cameras mounted as sensor on top of vehicles driving in highways and boulevards. 

The system was trained with ML algorithms to process a time-series of frames leading 

to a manoeuvre and predict a probability set for each valid lane change action. We 

draw inspiration from the SOTA in video classification with CNNs (Convolutional 

Neural Networks) and LSTMs (Long Short-Term Memory) algorithms and train our 

models on the PREVENTION available in public, which is the only database with real 

driving videos of real-world highway scenarios. 

Recent research has explored the impact of combining CNN architectures with time 

series modelling networks, e.g. LSTMs for ML tasks (classification, regression) on video 

data. Feichtenhofer et al. [] pioneered the development of ResNetlike models branded 

”SlowFast” for action recognition and video classification, since they use two branches 

based on Faster R-CNN for detection of multi-scale spatiotemporal features, by 

processing the input features in two different frame rates (fps), per branch. Driven 

from research in biology, the parallel processing of fast-changing temporal 

information and spatially detailed information yields SOTA performance in the 

Kinetics and AVA baselines. 

In addition, literature has researched the application of CNN and LSTM layers in 

sequence, as opposed to Slow Fast architectures, to embed pixel visual information in 

lower dimensional vector representations and therefore enable the application of 

time-series ML methods. The CNN-LSTM backbone with shared weights across time 

(CNN, LSTM resp.) extracts spatiotemporal features from the video inputs, and a 

classification head (MLP) processes the features to produce logit outputs. This 

dynamic approach has better performance than its opposed temporally static 

approach when LSTMs are ignored. 

Previous approaches in automated driving manoeuvre classification have adopted 

similar approaches. Izquierdo et. al (2019) [43] have experimented with manoeuvre 

classification (Left Lane Change, Right Lane Change) on RGB camera frames on the 

PREVENTION dataset. They have developed a GoogleNetLSTM model – drawing 

inspiration from the CNN-LSTM – which encodes (GoogleNet) the cropped RGB frames 

of vehicles in the vicinity of the ego vehicle for 60 frames (2s) and decodes (LSTM) the 

predictions for the lane change manoeuvres in a future horizon of 3 seconds. They 

have also experimented with novel techniques of encoding contextual information in 

different colour channels and processing the resulting representation with CNN and 

classification head for manoeuvre prediction. 

System Architecture 
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We follow the architecture inspired from [12], with minor modifications in the input 

fps value per branch and convolution kernels sizes which are shown below. The overall 

software layers for manoeuvre prediction in highways with SlowFast Resnet CNN, 

using the PREVENTION dataset are shown in Figure 18. The frames in the data segment 

are presented for some frames before the manoeuvre occurs. The frame on bottom 

right is closest to the manoeuvre and the frame on top left is furthest. The prediction 

classes stand for : LLC=”Left Lane Change” , RLC = ”Right Lane Change” , LK= ”Lane 

Keep”. The overall architecture for the Resnet SlowFast CNN algorithm is shown in 

Figure 19. 

 

Figure 18: Software pipeline for manoeuvre prediction in highways with SlowFast Resnet 
CNN, using the PREVENTION dataset 

 

Figure 19: Manoeuvre Classification Model: A SlowFast architecture and activation volumes 

We visualize the neural activations beginning from inputs to each branch (red, left) 

and leading to manoeuvre prediction probabilities (blue, right): 
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• Scene Encoding. We adopt the SlowFast modules shipped by PyTorch and we 

set τ = 20 for the slow pathway, i.e. read 1 out 20 frames, whereas α = 1 for 

the fast pathway [56]. These parameters were tuned in the validation set of 

the database. The backbone of the model is based on Resnet3D and is given 

below: we include lateral connections between the slow and fast branches 

after the layers mentioned in [56] (conv1, res1, res2, res3, res4). 

• Manoeuvre Decoding. The neural activation volumes of the last layer of the 

slow and fast branch backbone are flattened and concatenated to produce a 

one-dimensional feature vector that is processed by the classification MLP. 

The inputs are read with fps, for slow and fast branches (top, bottom), respectively 

head which produces unimodal manoeuvre predictions for one vehicle for the 

prediction horizon. The prediction is achieved by the linear layer (MLP) of 518 input 

neurons and 3x30 output neurons, for a prediction of 1 second in the future. 

PREVENTION consists of 5 recordings with 3 clips each, of approximately 40 minutes 

driving logs and labels (object detections, lane annotations (polylines), trajectories). 

Lane change manoeuvres are split into lane change left, lane change right, cut-in and 

cut-outs. For preprocessing, we split the raw video clips on the manoeuvre sequences, 

and we select clips of lane keeping while keeping the dataset balanced in classes. We 

utilize object detections, lane change annotations and the videos for the learning task. 

Video is read at 30 fps, and we crop the video sequences using a region of interest 

cantered on the non-ego vehicle detected by the annotators’ object detection 

framework, with a small added margin of 50 pixels per side and 100 pixels in the 

bottom detection side of the ROI. This ensures incorporation of lane information and 

therefore implicitly encoding vehicle lateral positioning for spatiotemporal lane 

change modelling. Lane change events with missing object or lane annotations for < 

10 frames are linearly interpolated (obj. bounding box coordinates) and if > 10 frames, 

are filtered out during preprocessing.  

 Slow Path. Fast Path. output dimensions 

data reading layer s = 20, 12 s = 1,12 Slow: 2 x 2242 

Fast : 16x2242 

conv1 1x72,64 

s = 1,22 

5x72,8 s 

= 1,22 

Slow: 2 x 2242 

Fast : 16x2242 

maxpool1 1x32 s = 

1,22 

1x32 s = 

1,22 

Slow: 4x 562 

Fast : 32x562 

res2 (x3) 1x12,64 

1x32,64, 

1x12,256 

3x12,8 

1x32,8 

1x12,128 

Slow: 3x562 

Fast : 32x562 
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res3 (x4) 1x12,128 

1x32,128 

1x12,512 

3x12,16 

1x32,16 

1x12,64 

Slow: 4x562 

Fast : 32x282 

res4 (x6) 3x12,256 

1x32,256 

1x12,1024 

3x12,32 

1x32,32 

1x12,128 

Slow: 4x142 

Fast : 32x142 

res5 (x3) 3x12,512 

1x32,512 

1x12,2048 

3x12,64 

1x32,64 

1x12,256 

Slow: 4x172 

Fast : 32x72 

Table 5: SlowFast network architecture for manoeuvre classification 

Finally, we remove video clips in turns of highways, due to bad quality annotations. 

The dataset is shuffled and prepared for offline supervised learning. Table 5 explains 

the splits used per dataset video, where the strides are represented in format: s = 

tempstrides,spatialstrides. 

Algorithms and Implementation 

We trained with SGD optimizer for 100 epochs, using initial learning rate 0.001 with a 

multi-step (multiplicative) decay of 10−1 at epochs = [20,40,60,80]. We trained on a 

single RTX 3080 GPU with a mini batch size of 32. We use no weight regularization.  

Evaluation is conducted on the manoeuvre classification task by considering the 

classification performance metrics: Accuracy which measures the correct manoeuvres 

out of all predictions, Precision, Recall and Area Under Receiver Operating 

Characteristic (AUROC) describing the overall capability of the developed classifier. 

 

 

Recording Clip Split LC LK 

1 1 train 8 10 

2 1 train 9 10 

2 2 val 6 10 

3 1 train 11 10 

3 2 val 12 10 

4 1 train 8 10 

4 2 val 7 10 

4 3 val 7 10 

5 All test 9 10 

Total train: LC: 36, LK:40 Total val: LC: 32, LK:40 

Table 6: PREVENTION Dataset class statistics after preprocessing 

Metric Expected Value to surpass SoTA Citation to SoTA 
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Precision 76.43% [44] 

Recall 73.2% [44] 

Table 7: Metrics reported previously on maneuver prediction on highways using ego view 
videos 

Preliminary results and baselines are shown in Table 6 and Table 7 (LK: Lane keeping, 

LC: Lane change). Full evaluation with quantitative results will be performed later as 

per the evaluation plan described in D6.1 of the EVENTS deliverables. 

2.5.2 Trajectory Prediction 

Trajectory prediction aims to predict trajectories in form of 3D waypoints (x, y, 

heading) for the non-ego vehicle as part of the planning pipeline for the ego vehicle. 

Trajectory Prediction is the step succeeding manoeuvre prediction and is conditioned 

on the predictions of the former module. It serves as a feature for contextual traffic 

information gathering prior to making decisions on the control action of the ego 

vehicle. We performed experiments on trajectory prediction in highways using the Ego 

view on images from a public database to complete the manoeuvre prediction 

module. 

 Parameters conv=K,  

F pool=K 

Dimensions 

out 

data 

layer 

Na (255, 3) 

conv1 (20,5) (235,5) 

pool1 (20) (225,5) 

conv2 (20,5) (210,5) 

pool2 (20) (200,5) 

conv3 (10,5) (180,5) 

pool3 (10) (160,5) 

conv4 (5,5) (140,5) 

pool4 (5) (120,5) 

Table 8: GNN architecture for trajectory prediction encoder 

Operating on graphs instead of raster maps or vectorized maps [43], graphs offer a 

more versatile representation of map features and therefore more flexible modelling, 

combining features from multiple agents across different lanes of highways, and 

aggregating information with graph convolution layers [45]. 

System Architecture 

The goal of the trajectory prediction module is to predict the time series 

 where m corresponds to a non-ego vehicle and T is the prediction 

horizon. 
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Two main parts of the architecture for this module. The first is the Graph-based Scene 

Encoder, in which an algorithm to featurize the ego view scene is developed, by 

constructing a graph from the lane annotation information on the current timestamp 

t = t′. Specifically: Given lane annotations as polylines of the form y = a∗x2 +b∗x+c, with 

y,x the longitudinal and lateral coordinates. We construct discretized lane polylines 

every 1m step from the ego vehicle longitudinally and in between successive lane 

polylines laterally to make a dense grid with 2D coordinates. We construct an 

undirected graph with vertices on those coordinates: G(V = (x,y),E = {e ∈ Ns(V ) ∪ Nn(V 

)}) and edges connecting neighboring (Nn) and successive (Ns) lane nodes. We limit 

the neighboring node edges to k = 3 the left and right neighbors. Next, we search the 

database for objects (vehicles) located at any of the graph vertex locations and append 

a binary feature to represent if a vertex is preoccupied by an obstacle. We construct a 

4-layer GNN (Graph Neural Network) that operates on the constructed graph and 

encodes the contextual scene information captured per graph node feature.  

The second is the Trajectory Decoder To decode, similarly to the manoeuvre prediction 

module, we flatten the activations of the final GNN layer and apply an MLP for 

trajectory regression. 

Algorithms and Implementation 

ICCS conducted experiments on the PREVENTION dataset, utilizing the waypoint 

trajectory annotations as features. ICCS used an RTX 3080 GPU, with the Adam 

Optimizer, learning rate 0.001 and exponential decay of rate 0.1, weight regularization 

0.001 and dropout 0.1 in the 3rd and 4th layer of the GNN. 

Some common metrics for prediction performance evaluation were considered, i.e. 

Average Displacement Error (ADE), Final Displacement Error (FDE).  

The metrics quantitative results will be reported on D6.1. 

2.5.3 Joint Prediction and Planning 

Joint Prediction and Planning is a new part of ICCS work that was taken over in the 

context of WP4 based on the second project amendement (approval is pending at the 

time of writing) and which is still under development. What is reported here is the 

progress that has been made until this deliverable’s submission date. 

Joint Prediction and Planning aims at merging the two problems with a unified 

framework, where prediction informs planning and vice-versa. This is achieved either 

as a modular pipeline by pre-training sub-components individually prior to evaluation 

or by constructing an end-to-end differentiable model, with one training and 

evaluation cycle. To reflect on the real-life behaviour of vehicles during their 

interaction in traffic situations, a reactive closed-loop simulator is suitable, which 

enables multiple models of non-ego agent driving intentions, i.e. aggressive, passive 
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or safe. ICCS aims to unify prediction and planning with a public simulator, which is 

modified with added prediction capacities. As planning, we define the models 

producing a sequence of ego actions which aim to imitate an expert trajectory time 

series. In this deliverable, we report the details of the algorithmic approach followed 

on this task. 

It was previously established that learned ML modules for planning in open-loop are 

hard to generalize in closed-loop as they do not provide safety guarantees, because of 

their dependence on data [46], introducing covariate shift. We, therefore, conduct 

experiments on the world's first differentiable simulator, which allows closed-loop 

reactive driver control during simulation with any custom ML model for the agents in 

the simulation. 

As [45] has explained, integrating the Prediction and Planning modules in ADAS is 

critical for safe, long-term driving simulations. Since no works have previously been 

reported on adapting the nuPlan simulator for Joint approaches, we modify the open-

source software to support end-to-end differentiable, joint prediction methodology. 

Similar to previous work [42], we adopt a BEV maps representation and past vehicle 

tracks as features from the nuPlan database and train on imitation loss, but 

augmented with hand-crafted cost terms which ensure ego vehicle safety, given 

trajectory forecasts of nonego agents, thereby improving contextual reasoning by the 

AI model controlling Ego. 

System Architecture 

The objective of the joint prediction and planning paradigm is to create ego plans 

informed by non-ego trajectory predictions. 

 

Figure 20: Virtual training and evaluation pipeline in a modular approach 
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The Cost function  is a planner-aware prediction hand crafted term 

and allows cost-based optimization of the planner trajectory with Gauss-Newton 

algorithm. 

Figure 20 (Abbreviations are: X: Image Input, M: Vector Map, N: Number Agents, Th: 

Prediction input window, S: Predicted Trajectory of non-ego, Tp: Future horizon) 

shows the virtual pipeline for joint prediction and planning with nuPlan with a modular 

pipeline. 

Algorithms and Implementation 

ICCS trained the joint approach on the nuPlan dataset in Las Vegas, Boston, Pittsburgh 

and Singapore. All training and testing scenarios are selected to correspond to 

highways and urban boulevards, so as to satisfy EXP7 UCs. For validation and testing, 

the model outputs multi-agent trajectories for the future horizon. 

 Parameter Dimensions 

out 

data 

layer 

NA 146x30 

conv1 K=2,F=20 74x20 

pool1 K=2 35x20 

conv2 K=2,F=30 15x30 

pool2 K=2 7x30 

conv3 K=2,F=40 3x40 

pool3 K=2, 2x40 

Table 9: Prediction Architecture which processes vectorized maps and agent tracks as 
features via a CNN model 

For prediction, ICCS used the Resnet-50 and Resnet101 as baselines for a raster model. 

The predictor architecture layers are tabulated in Table 9, where the normalization 

and activation layers are omitted for simplicity. The model processes vector maps and 

historical non-ego features to predict their future trajectories in a +2s horizon. 

As baselines for the evaluation, ICCS considered the aforementioned network, but 

modified in the last layer to conduct single-agent predictions, and the model without 

vectorized map semantics as input features. 

Some metrics are considered in Table 10 and Table 11. 

Metric Description Research Question Units Expected 

Outcome 

(SoTA) 
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Static 

Average 

Displacment 

Error(ADE) 

within bound 

Average 

Displacement 

Error: L2 

Error from ground 

truth of 

predictions for 

standalone 

Predictor training 

(Open-Loop). The 

scores are 

bounded within 

[0,1]. 

Is Open Loop 

(static) ADE 

performance worse 

than Closed loop 

(dynamic) 

performance? 

m < 1m [] 

Static Final 

Displacement 

Error (FDE) 

within bound 

Final 

Displacement 

Error: L2 error at 

the end of the 

current training 

route. The score 

is bounded within 

[0,1]. 

Is Open Loop 

(static) ADE 

performance 

worse than 

Closed loop 

(dynamic) 

performance? 

m < 1m [] 

Dynamic 

Average 

displacement 

error (ADE). 

Average 

Displacement 

Error in Dynamic 
Evaluation: L2 

Trajectory 

Prediction error in 

Reactive Closed 

Loop 

Simulation. 

Is Closed Loop 

Reactive (dynamic) 

ADE less in 

reactive 

evaluations and 

does it correlate 

better with Ego 

planning 

performance? 

m < 0.5m 

Average 

Heading 

Error(AHE) 
within 

bound in 

Static 

Evaluation 

Average heading 

Error in Static 

Evaluation: L2 

error of predicted 

steering angles 

(heading) in 

Open- 

Loop evaluation. 

What is the AHE 

in open-loop 

evaluation. 

m < 0.5m 

Dynamic 

Average 

Heading 

Error(AHE) in 
Dynamic 

Evaluation 

Averag Heading 

Error in Dynamic 

Evaluation: L2 

Vehicle Heading 

error in Reactive 

Closed Loop 

simulation. 

Is Closed Loop 

Reactive (dynamic) 

AHE less in 

reactive 

evaluations and 

does it correlate 

better with Ego 

planning 

performance? 

rad ¡5rad 
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Table 10: Prediction metrics for Joint Prediction and Planning model evaluation in Open Loop 
evaluation protocol 

Metric Description Research 

Question 

Units Expected 

Outcome 

Expert 

Imitation 

Displacement 

error of control 

outputs with 

expert 

demonstrations, 

when training in 

open-loop. 

What is the Expert 

Imitation Error in 

Open-Loop 

training of ego 

agent? 

m < 0.3m 

Navigation Percentage of full 
track completed 
by the Ego con- 

troller. Percentage 

full track 

completed by the 

planner 

What is the 
avarage 

percentage 

of tracks 

completed by the 

vehicle? 

% > 90 

Ego 

Dynamics 

and Safety 

Test if 

Longitudinal and 

lateral jerk of the 

ego vehicle within 

a predefined 

threshold. 

What is the 
horizontal and 

lateral 

accelerations 

experienced by 

the vehicle and 

the passenger? 

m2 < 1.2 

Time to 

Collision 

Time To collision 

computed by 

project in ego and 

non-ego tracks 

and taking the 

minimum of the 

distances, if a 

collision occurs. 

What is the TTC in 
open-loop vs 
closed-loop 

evaluation with 

Joint prediction 

and planning? 

s > 5s 

Table 11: Closed-Loop evaluation metrics for Joint Prediction and Planning module 

The metrics final values will be reported in EVENTS D6.2 deliverable. 

2.6 EXP8 

EXP8’s title is "Emergency evasion manoeuvre on the slippery roads under rain 

conditions". The objective is to perform collision avoidance (e.g. pedestrian, cyclist or 

vehicle) in poor weather conditions on slippery roads. Experiment 8 (EXP8) is under 

the responsibility of the partners TUD and PERCIV.AI. 

2.6.1 Architecture 
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The proposed behavioural decision-making aims to solve the scenario represented in 

Figure 21, which consists of a vehicle going straight on the road with an obstacle 

appearing in front of it. The decision-making task is to decide the safest course 

trajectory to avoid the collision. There are two options: braking and turning to perform 

an evasive manoeuvre or straight-line braking to stop the vehicle before the obstacle. 

It is essential to highlight that the described scenario represents a vehicle which needs 

to perform an emergency manoeuvre on a slippery surface, so it aims to evaluate the 

behaviour of the decision-making algorithm at the limit of handling. It does not 

consider decisions that are aligned with human expectations. 

 

Figure 21: Scenario for behavioural decision making 

The parameters are: A is the longitudinal vehicle-to-obstacle distance, B is the lateral 

vehicle-to-obstacle distance, γ is the angle between the vehicle velocity direction and 

the corner of the obstacle, d is the distance between the vehicle and the obstacle’s 

corner, and θ is the direction of the vehicle acceleration. 

The proposed decision-making consists of computing an analytical solution based on 

a point mass model constrained by the acceleration circle. The latter, commonly called 

the g-g diagram, is represented in Figure 22 and is employed to assess the 

performance of road vehicles [48]. The model assumes that during an emergency 

manoeuvre, the vehicle motion is mainly determined by the constraints on the 

acceleration due to friction. Thus, it is assumed that the vehicle's maximum 

acceleration is only limited by the friction coefficient 𝜇 and the gravitational 

acceleration 𝑔 as follows: 

𝑎𝑥
2 + 𝑎𝑦

2 ≤ (𝜇𝑔)2     (1) 
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Figure 22 G-G diagram of a road vehicle 

In the EVENTS project, the objective is to perform collision avoidance in poor weather 

conditions on slippery roads. For this reason, the decision-making algorithm is 

optimised for the minimum possible friction [50, 51]. 

2.6.2 Algorithmic Approach 

Straight-line braking. The most straightforward decision is to stop before 

encountering the obstacle [49]. The minimum coefficient of friction necessary to halt 

within the braking distance A when travelling at velocity v is given by: 

μ =
v2

2 𝑔 𝐴
     (16) 

However, to compare its performance relative to other manoeuvres, a dimensionless, 

invariant quantity associated with straight-line braking is used, and it is computed as 

follows: 

2𝜇𝑔𝐴 = 𝑣2     (17) 

Minimum-Time Lane Change. Another straightforward approach involves travelling 

the distance B (see Figure 21) in the minimum time possible [52], [53]. This means that 

the vehicle does not need to brake straight, but it will avoid obstacles passing next to 

it. Given the point mass dynamics, the analytical solution can be computed from the 

vehicle's initial and final position. The initial conditions at time t are reported on the 

left side, and the final conditions at time tf on the right: 

𝑋(𝑡) = 𝑣 𝑡          𝑋(𝑡𝑓) = 𝐴 = 𝑑 cos(𝛾)

𝑌(𝑡) =
1

2
𝜇 𝑔 𝑡2 𝑌(𝑡𝑓) = 𝐵 = 𝑑 sin(𝛾)

   (18) 
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The analytical solution formulated to simplify the comparison with the straight-line 

braking is represented as follows: 

𝜇 𝑔 𝐴

𝑣2
= 4tan (

𝐴

𝐵
) = 4tan 𝛾    (19) 

Thus, it is possible to conclude that whenever 4 tan 𝛾 < 1 or |𝛾| < 14°, the Minimum-

Time Lane Change is a better strategy than straight-line braking to avoid a potential 

collision. However, it is important to mention that the vehicle will avoid the obstacle 

only when 
𝜇 𝑔 𝐴

𝑣2
≤ 4 tan𝛾. 

Constant Curvature Turn. Another decision to the problem consists in avoiding the 

obstacle performing a constant radius corner. The analytical solution can be computed 

considering that the minimum curvature radius R is computed as 𝑅 =
𝑣2

𝜇𝑔
, and the 

curvature radius to avoid the obstacle is 𝑅2 = 𝐴2 + (𝐵 −𝑅)2. Thus, the analytical 

solution to collision avoidance trajectory becomes: 

𝜇 𝑔 𝐴

𝑣2
=

2A

R
= 2 sin(2 𝛾)    (20) 

The decision of constant curvature turn performs better than straight-line braking 

whenever 𝛾 ≤ 15°. 

Optimal Manoeuvre. The optimal solution for vehicle collision avoidance decisions can 

be expressed by computing the globally fixed acceleration vector with maximum 

magnitude [54],[55]. Thus, the optimal manoeuvre corresponds to computing the 

constant acceleration 𝜃, see Error! Reference source not found.. Similarly to the M

inimum-Time Lane Change, the solution can be computed by imposing initial and final 

conditions on the optimum problem described by the point mass model. The initial 

and final conditions are defined as follows: 

𝑋(𝑡) = 𝑣 𝑡− sin 𝜃  
𝜇𝑔𝑡2

2
         𝑋(𝑡𝑓) = 𝑑 cos 𝛾

𝑌(𝑡) = cos 𝜃  
𝜇𝑔𝑡2

2
                   𝑌(𝑡𝑓) = d sin𝛾

  (21) 

The solution can be summarised as: 

2𝜇𝑔𝐴

𝑣2
=

4sin 𝛾 cos𝛾 𝑐𝑜𝑠𝜃

cos2(𝜃−𝛾)
    (22) 

The optimal constant acceleration 𝜃 can be computed, taking the first and second 

derivative of the Eq. 22. The optimal solution for all 𝛾 ≤ arcsin1 3⁄  is: 
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𝜃 =
𝛾+arcsin(3sin 𝛾)

2
     (23) 

However, it is also relevant to compute the trajectories with a constant acceleration 

which do not bring the vehicle to a collision when the minimum 𝜃, in Eq. 23, is not 

defined. This is possible imposing the final longitudinal velocity of the vehicle higher 

or equal to 0 as follows: 

𝑣 − 𝜇𝑔 sin(𝜃) 𝑡𝑓 ≥ 0    (24) 

By solving the system of equations in Eq. 7 for tf and substituting it into Eq. 24, the 

following condition can be computed: 

2𝜇𝑔𝐴

𝑣2
≤

cos𝛾 cos𝜃

sin 𝛾 sin2 𝜃
     (25) 

The left side of Eq. 25 can then be substituted with Eq. 24, yielding the following 
analytical condition: 

𝜃 ≤ arctan (
1

tan 𝛾
)      (26) 

Figure 23 shows in red the boundary of the feasibility condition for the existing of an 

optimal manoeuvre with a constant acceleration 𝜃. The minimum optimal constant 

acceleration 𝜃 is plotted in blue and in black are reported all the possible solutions 

reported in Eq. 22. Whenever the trajectories collide with the obstacles, they are 

reported as black dashed lines. 

Analysing Eq. 20 and Eq. 15, it is possible to evaluate that the optimal manoeuvre can 

be performed at less friction than straight-line braking, when 𝛾 < 16.7°. 

The black solid curves represent the constant acceleration trajectories that avoid the 

obstacle at different times. The black dashed curves are the constant acceleration 

trajectories that do not avoid the obstacle at different times. The solid blue line is the 

minimum optimal constant acceleration trajectory. The red line shows the boundary 

of the feasibility condition for the existence of an optimal manoeuvre with a constant 

acceleration. 
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Figure 23: Performance comparison of the different strategies 

The developed behavioral decision-making algorithm can provide a coarse trajectory 

for a vehicle that needs to avoid an obstacle on a slippery surface. The optimal coarse 

trajectory is optimized to work with the minimum friction coefficient to deal with poor 

weather conditions. 

2.6.3 Future work 

Future work includes quantitative evaluation of the proposed behavioural decision-

making via simulations and real-world tests. Also, several limitations will be 

addressed: i) The vehicle dynamics are described by a point mass model (despite being highly 

computationally efficient, it is less accurate than the more complex model considering the tire 

slip); ii) The perception uncertainties are only considered when defining the obstacle size the 

vehicle needs to avoid (they could be further integrated into the optimization problem to 

reduce the conservativeness of the approach). 
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 Conclusions 
This deliverable highlights the behavioural decision-making strategies, including the 

identification of the optimal manoeuvre in a given situation, as implemented in T4.2. 

In particular, this task considers the inputs provided by WP3 and feeds T4.1 with high-

level decisions (such as the start of lane-change and following a leading vehicle) or 

with low-level information (such as road boundaries and distance to stop).  

The algorithms used in Task 4.2 are based on SOTA machine learning, probabilistic and 

optimal control methods (e.g., MDP or POMDP, GNN, MPC, Bezier Curves, etc.). In 

addition, T4.2 aimed also at providing high-level decision-making strategies, to 

identify the optimal manoeuvre in a given situation (including the cases in which an 

ODD limitation is reached).  

This document also considers another important aspect: behaviour and trajectory 

prediction can be applied to describe the future behaviour of non-ego vehicles in the 

proximity of the ego vehicle, which can affect its decision-making and planning. So, 

this deliverable also presents how inference is conducted for all surrounding non-ego 

vehicles detected by the on-board perception system in the frontal view of the ego 

and targets a prediction horizon of 3s from the real timestamp of the prediction. This 

is in line with the interactive nature of prediction and planning in real-life driving. 

To sum up, deliverable D4.3 presents an overview of the main algorithms used by 

EVENTS partners for the decision-making module, with many details of the related 

implementation. A complete test report will be instead provided within WP6, where 

the full evaluation of the decision-making modules will be performed for each 

experiment.  
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