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Executive Summary 
 

This document presents the final deliverables for Task 4.1, Motion Planning, within 

the EVENTS project. It encompasses the finalized designs and implementations of the 

motion planning module, detailing its development and integration into various 

experimental setups. Each experiment includes a dedicated description of how the 

module is adapted to meet its unique requirements. The algorithms and 

methodologies used for motion planning have been specifically tailored and optimized 

for each experiment. These are concurrently integrated within both the simulation 

environment and the real-world platform, forming the core of ongoing work in WP5. 

Full quantitative outcomes, aimed at validating the module’s performance, are 

anticipated in WP6, which will focus on the evaluation phase and cost-efficient sensor 

suite optimization. Thus, this report represents a comprehensive overview of progress 

in Task 4.1. 
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 Introduction 

1.1 Project aim 

Driving is a challenging task. In our everyday life as drivers, we are facing unexpected 

situations we need to handle in a safe and efficient way. The same is valid for 

Connected and Automated Vehicles (CAVs), which also need to handle these 

situations, to a certain extent, depending on their automation level. The higher the 

automation level is, the higher the expectations for the system to cope with these 

situations are. 

In the context of this project, these unexpected situations where the normal operation 

of the CAV is close to being disrupted (e.g., ODD limit is reached due to traffic changes, 

harsh weather/light conditions, imperfect data, sensor/communication failures, etc.), 

are called “events”. EVENTS is also the acronym of this project. 

Today, CAVs are facing several challenges (e.g., perception in complex urban 

environments, Vulnerable Road Users (VRUs) detection, perception in adverse 

weather and low visibility conditions) that should be overcome to be able to drive 

through these events in a safe and reliable way. 

Within our scope, and, to cover a wide area of scenarios, these kinds of events are 

clustered under three main use cases: a) Interaction with VRUs, b) Non-Standard and 

Unstructured Road Conditions and c) Low Visibility and Adverse Weather Conditions. 

Our vision in EVENTS is to create a robust and self-resilient perception and decision-

making system for AVs to manage different kinds of “events” on the horizon. These 

events result in reaching the AV ODD limitations due to the dynamically changing road 

environment (VRUs, obstacles) and/or due to imperfect data (e.g., sensor and 

communication failures). The AV should continue and operate safely no matter what. 

When the system cannot handle the situation, an improved minimum risk manoeuvre 

should be put in place. 

1.2  Deliverable scope and content of the Document  

Task 4.1 of the EVENTS project is dedicated to motion planning, encompassing the 

design and integration of algorithms to generate trajectory references for both 

longitudinal and lateral control. This document reports the final developments in Task 

4.1, focusing solely on motion planning, which will be implemented and tested across 

selected experiments in the project. Results and quantitative analyses are planned in 

future deliverables. 

In this document, not every experiment is discussed in the project EVENTS. After all, 

the development of both motion and behavioural planning depends on each 
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experiment's focus. Motion planning will be developed and tested for EXP1, EXP2, 

EXP4, and EXP8. 

The document is structured as follows: 

• Chapters 2 to Chapter 5 go in-depth into the developments of each experiment 

regarding the motion planning module. 

• Finally, Chapter 6 presents the conclusions of the progress mentioned in the 

previous chapters as a summary of the document. 
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1.3 Motion Planning  

Motion planning is a critical component of Automated Vehicles (AV). As AVs move 

through dynamic and unpredictable environments, their ability to plan and execute 

precise paths is essential for maintaining safety and efficiency. The core objective of 

the motion planning system is to create a feasible and comfortable trajectory that the 

vehicle’s control system can follow. This planning relies on input from perception, 

communication, and internal acquisition and self-assessment modules, as illustrated 

in the EVENTS architecture (Figure 1). This architecture has served as a reference 

throughout the whole EVENTS project and has guided the interaction between 

different modules developed within the project. 

 

Figure 1 EVENTS high-level Architecture and Interfaces (“Master Architecture”)  [1]  

The motion planning framework proposed in EVENTS addresses the complex 

challenges of autonomous navigation through different methods for each of the 

experiments selected. Optimization methods play a key role, where the motion 

planner formulates each movement as a local optimization problem, minimizing a cost 

function that balances road-following accuracy, comfort, obstacle avoidance, and 

steering smoothness. The vehicle dynamics are modelled with a jerk-controlled 

kinematic bicycle model, ensuring smoother and more comfortable trajectories by 

penalizing high jerks and rapid wheel angle changes. Several cost components 

contribute to this objective: a curvature-aware contouring cost to track the reference 

path, an adaptive velocity term to handle sharp turns, a repulsive force for obstacle 

avoidance, and a Huber loss to maintain robustness against outliers. 
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Various trajectory generation methods were evaluated, such as Bézier curves, splines, 

and optimization-based approaches, each offering unique advantages. Quintic Bézier 

curves were emphasized for their smoothness and adaptability, while splines provided 

a cost-effective solution for trajectory smoothing. An optimization-based method 

utilizing a kinematic Ackermann model was implemented within a Model Predictive 

Control (MPC) framework to enhance trajectory reactivity, particularly in slippery 

conditions. Performance indicators were established to quantify the trade-offs 

between accuracy, comfort, and computational efficiency, focusing on vehicle 

dynamics, trajectory adherence, and responsiveness. 

In a complementary effort, high-definition (HD) map updates were proposed based on 

detected roadwork bollards. This method seeks to enhance real-time map accuracy by 

integrating data from camera and GPS sources to inform motion planning. The specific 

operational design domain (ODD) was defined as a two-lane road with one lane 

blocked by roadworks. This lane definition was later used as input for one of the 

trajectory generation methods developed for the project. 
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2. EXP1 (TUD) 
Experiment 1 (EXP1) focuses on the "Interaction with Vulnerable Road Users (VRUs) 

in a Complex Urban Environment". The objective is to achieve safe, comfortable, and 

time-efficient automated driving in a complex urban environment while engaging with 

VRUs such as pedestrians and cyclists. 

2.1 SoTA 

The state-of-the-art methods for motion planning were discussed in D4.1 “Initial 

version of motion planning and behavioural decision-making components”. Based on 

the analysis, the optimization-based approach has been selected. 

The implementation of the optimization-based planner, path tracking is accomplished 

with Model Predictive Contouring Control (MPCC) [2], which introduces a cost 

function that allows the vehicle to follow the road (i.e., the reference path) and stay 

within the road boundaries. However, in the study [3], it was noted that the default 

formulation (e.g., as used in [2]) does not consider the curvature of the reference path. 

Therefore, the following issues have been noted for the improvement: 

1. When tracking a velocity, that velocity is not in the direction of the path, 

possibly resulting in speeding when overtaking.  

2. A planned trajectory could violate the road boundary constraints while giving 

back a feasible solution. 

To resolve these issues, the proposed planner uses Curvature-Aware MPC to resolve 

these problems in favour of MPCC to improve planning performance. 

2.2Architecture 

The proposed motion planner is integrated with Autoware to replace the default 

scenario planner, as shown in Figure 2. It uses the existing mission planner to plan a 

high-level route from the vehicle position to the user-specified target position. The 

high-level route is processed to provide path information for the motion planner. The 

trajectory computed by the motion planner is passed to the control module. This 

control module then computes control inputs to track the trajectory as closely as 

possible. 
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Figure 2 The motion planner replaces the scenario planner in the Autoware ROS stack.  

The architecture of the motion planning and decision-making components is shown in 

Figure 2, in which the motion planning without behavioral decision-making is 

represented in the local planner step (marked in blue) in which P collision-free 

trajectories are planned in parallel. A high-level guidance planner computes global 

guidance trajectories. Each guidance trajectory is passed to a set of local planners that 

further refine the trajectories and ensure they are dynamically feasible. The executed 

trajectory is determined by comparing the locally planned trajectories. The motion 

planning part (local planning) is discussed in this deliverable. 

The local planners are implemented with Model Predictive Control. Each local planner 

solves a nonlinear MPC problem in real time, computing a locally optimal trajectory. 

 

Figure 3 Motion planning architecture 

2.3Algorithmic Approach 

The generic formulation of the optimal control problem is presented in D4.1, “Initial 

version of motion planning and behavioural decision-making components”. For 

automated driving, each of the local optimisation problems that the motion planner 

solves online is given by: 
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     (2.1) 

where 𝐽 represents the objective to be minimised, 𝑓 is the vehicle model and 𝑔 

represents the collision avoidance and road boundary constraints.  

The vehicle model is a jerk-controlled kinematic bicycle model with control inputs. 

With 𝑙𝑟 , 𝑙𝑓 the distances from the front and rear axles to the centre of gravity of the 

vehicle, 𝛿 the wheel road angle, 𝑥, 𝑦 the vehicle position, 𝑣 its forward velocity, 𝜃 the 

heading angle, 𝑎, 𝑗 the acceleration and jerk and 𝜔 the road wheel angle rate, the 

vehicle model is given by 

𝛽 = tan−1 (
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
∗ tan(𝛿)) 

�̇� = 𝑣 cos(𝑝𝑠𝑖 + 𝛽) , �̇� = 𝑣 sin(𝑝𝑠𝑖 + 𝛽)   (2.2) 

�̇� =
𝑣

𝑙𝑟
sin(𝛽) 

�̇� = 𝑎, �̇� = 𝑗, �̇� = 𝜔. 

Changes in jerk are known to result in discomfort. By controlling the jerk, penalizing 

high jerks leads to smoother and more comfortable trajectories. The rate of road 

wheel angle is penalised to make steering input sufficiently smooth.  

The objective consists of the following components: 

Road Following (Curvature-Aware Contouring [3]). This cost function follows a 

reference path [0, 𝑆] → ℝ2 (mapping distance to x and y positions) and it aims to track 

a reference velocity in the direction of the path. The cost is computed as: 

𝐽𝐶𝐴−𝑀𝑃𝐶 = 𝑞𝑠(𝑠�̇�− 𝑠�̇�)
2 + 𝑞𝑐(𝜖𝑘

𝑐)2,    (2.3) 

where 𝑠�̇�  and 𝑠�̇�  are the current and target velocity in the direction of the path, 𝜖𝑘
𝑐  is 

the curvature-aware contouring error, and 𝑞𝑠 and 𝑞𝑐 are tuning parameters. 

Compared to MPCC, CA-MPC has one less tuning parameter, as no lag error is 

required. The complexity in the implementation of CA-MPC is in the computation of 

𝑠�̇� , that considers the curvature of the reference path. The reference path is obtained 

from the lanelets in the path of Autoware’s default mission planner. It is processed to 

form a sequence of cubic splines that are smoothed together, ensuring first-order 

continuity of the reference path. In addition to the stage-wise contouring cost, a 
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terminal cost is added on the deviation of the vehicle orientation from the direction 

of the reference path and on the regular contouring costs. 

Adaptive Reference Velocity: The term �̇�𝑡 in our implementation is adaptive in that 

we define it as a function [0, 𝑆] → ℝ+, that maps distance along the reference path to 

a velocity. This, for example, allows the vehicle to stop at the end of the path and can 

accommodate for tight corners by scaling back the reference velocity. 

Huber Loss (a loss function used in robust regression, that is less sensitive to outliers 

in data than the squared error loss): Instead of quadratic penalties (e.g., 𝑥2) we 

formulate our cost function regarding the path reference and velocity as the Huber 

loss of the component. The Huber loss is only quadratic up to a threshold and linear 

after this, preventing any cost from dominating the behaviour of the vehicle by 

reducing the costs that are far from the reference (e.g., preventing aggressive 

acceleration from standstill). 

Obstacle Repulsive Forces: To encourage the vehicle to keep its distance from VRUs, 

we include this cost term: 

𝐽𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 = 𝑞𝑟∑
1

(Δ𝑥𝑘
𝑖 )
2
+(Δ𝑦𝑘

𝑖 )
2
+𝛾

𝑁
𝑖=1 ,    (2.4) 

where Δ𝑥𝑘 ,Δ𝑦𝑘 represent the distances to each of the obstacles (superscript 𝑖) and 𝛾 

is a constant for numerical stability. Parameter 𝑞𝑟 weights how strong the vehicle 

moves out from obstacles. 

Acceleration, Jerk and Rotational velocity penalties: Comfort is promoted by the cost 

term: 

𝐽𝑖𝑛𝑝𝑢𝑡 = 𝑞𝑎𝑎
2 + 𝑞𝜔𝜔

2 +𝑞𝑗𝑗
2,    (2.5) 

where 𝑎, 𝜔 and 𝑗 are the acceleration, yaw rate and jerk, and 𝑞𝑎 ,𝑞𝑤 , 𝑞𝑗 represent their  

weights respectively. 

Slack penalty: For ensuring feasibility, some constraints can be violated by a fixed 

amount and the resulting violation 𝑑 is penalized with a cost: 

𝐽𝑠𝑙𝑎𝑐𝑘 = 𝑞𝑠𝑙𝑎𝑐𝑘𝑑     (2.6) 

The constraints consist of the following components: 

Probabilistic dynamic obstacle avoidance: Obstacles and their future motion are 

predicted with a Gaussian probability distribution for each time instance. In this 

probabilistic context, a collision is a probabilistic event that happens with a 

probability. The proposed motion planner constrains the probability of collision 𝜖, 0 ≤

𝜖 < 1, that is, the probability that a collision happens at any point in its trajectory. 
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These constraints are imposed using Chance Constrained MPC [4]. Modelling the 

vehicle with several discs and each obstacle as a single disc, a linear constraint 𝐴𝑘𝑝𝑘 ≤

𝑏𝑘  can be formulated to describe how far from the obstacle the vehicle discs can be. 

The cchance-constrainedMPC imposes the constraints: 

𝐴𝑘
⊤(Δ𝑝𝑘)− 𝑟 ≥ erf−1(1 − 2𝜖)√2𝐴𝑘

⊤Σ𝑘𝐴𝑘
⊤ ,   (2.7) 

With Δ𝑝𝑘 the difference in position between the obstacle and the vehicle disc, Σ𝑘  the 

variance of the distribution and erf−1(⋅) the inverse standard error function. These 

constraints ensure that the probability of collision at time 𝑘 is smaller than 𝜖 and are 

imposed for each obstacle, each vehicle disc and each time step. 

Homotopy class constraints: To ensure that the homotopy class of the global guidance 

trajectory is respected (i.e., the direction in which it passes obstacles) an additional 

constraint is inserted per obstacle. This constraint is of the form 𝐴𝑘𝑝𝑘 ≤ 𝑏𝑘, but where 

𝑝𝑘 is taken from the guidance trajectory at the time step 𝑘 and where the obstacle is 

given zero radius as the probabilistic collision avoidance constraint is responsible for 

collision avoidance. An example is visualised in Figure 4. 

 

Figure 4 Example of two locally optimized trajectories (blue / green) 

In Figure 4 each trajectory uses a homotopy distinct global guidance trajectory to 

construct a set of homotopy class constraints. This example considers a static 

obstacle and indicates that the homotopy constraints do not allow the vehicle to 

pass the obstacle on the other side. 

Road boundary constraints: The vehicle is kept within the road boundaries by 

constraining the curvature-aware contouring error as: 

𝑏𝑙 ,𝑘(𝑠𝑘) ≤ 𝜖𝑘
𝑐 ≤ 𝑏𝑟,𝑘(𝑠𝑘),    (2.8) 



 D4.1: Initial version of motion planning and behavioural decision-
making components  

©EVENTS Consortium 2022-2025                                                                                                           Page 17 of 43 

 

where 𝑏𝑙,𝑘  and 𝑏𝑟,𝑘  represent the road width on the left and right side, respectively, 

as a function of the current position of the vehicle along the path. These functions are 

obtained by first retrieving the lanelets from Autoware’s mission planner. For each 

point on the reference path, a representative point on the boundary is computed. 

Over these points, a set of cubic splines are fitted and passed to the optimisation 

problem at runtime. 

State and input constraints: Finally, states and inputs are constrained to match their 

physical application. 

The road boundary and collision avoidance constraints are formulated with a slack 

variable that allows small violations (𝑑 ≤ 0.1) that allows the optimisation to remain 

feasible when the perception or control components deviate from their expected 

behaviour. 

Note that, using the global guidance from behavioural decision-making, the planner 

usually solves multiple instances of the local optimisation problem concurrently, 

ultimately comparing their solutions. 

The overall planner parameters are listed in Table 1 Planner parameters, values and their 
description 

. 

Parameter Value Description 

𝑞𝑠 0.075 Contouring weight 

𝑞𝑐 0.015 (terminal: 0.075) Velocity tracking weight 

𝑞𝑟 0.05 Obstacle repulsion weight 
𝑞𝑎 0.2 Acceleration weight 

𝑞𝜔 0.05 Rotational velocity weight 
𝑞𝑗 0.01 Jerk weight 

𝑞𝑠𝑙𝑎𝑐𝑘 10 Slack weight 

�̇�𝑡 (Adaptive, default: 
2.5m/s) 

Reference velocity 

𝛾 10−5 Numerical stability constant (for obstacle 
repulsion) 

𝜖 0.05 (5% risk) Probability of collision 

𝑛𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 5 Number of cubic splines used for 
optimization 

𝑛𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 4 Number of obstacles 
𝑁 35 Planning horizon 

Δ𝑡 0.2s Time between discrete time steps of the 
prediction 

𝑇 7.0s Planning time horizon 

𝑡𝑙𝑜𝑜𝑝 0.1𝑠 Planning time 

Table 1 Planner parameters, values and their description 
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The MPC planner is implemented within the Autoware framework, using ROS and C++. 

The optimization problem is solved with Forces Pro [5]. The implemented software 

first generates C++ code from a python-based problem description. This generated 

C++ code is used by the developed C++ software that solves the planning problem 

using real-time data from the vehicle. 

To define good initial guesses for the parameters in Table 1 Planner parameters, values 
and their description 

, high-level performance indicators are optimised with an open-source optimisation 

framework, Optuna, that implements hyperparameter tuning with Bayesian 

optimisation. The resulting weights are then manually adjusted to fine-tune the 

motion planner. 

The qualitative behaviour of the developed motion planner is illustrated in Figure 5. 

The first figure shows that the planner allows the vehicle to corner smoothly (top left), 

following the reference path. In the second figure (top right), the vehicle stays within 

the road boundaries and avoids a pedestrian, thanks to the constraints. The bottom 

figures show that the vehicle performs the scenario safely and efficiently. 

 

Figure 5 Behaviour of the planner in a scenario with one crossing pedestrian.  

In the Figure 5 the green / yellow area denotes the planned and past trajectory of the 

vehicle, with yellow (slow) to green (fast) marking speeds. Pedestrian motion is 

predicted forward in time with a Gaussian distribution illustrated with blue-yellow 

circles. In the top images, two trajectories are optimized (green/red short lines) that 

pass the obstacle in different ways. The red trajectory is executed (it has a lower cost), 

causing the vehicle to pass behind the pedestrian. 
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2.4 Future work 

The next step is quantitively validating the proposed motion planner in the Autoware 

simulation and comparing its performance against the default Autoware planner. 

Validation metrics are focused on safety, time efficiency and comfort. This 

quantitative evaluation will be included in D6.2 “Technical evaluation results”.   
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 EXP2 
In the EXP2, a platoon formed by a leader and two follower vehicles is split due to the 

interruption of an outside vehicle in a roundabout. The goal is to reconnect the 

platoon again so they can cross the roundabout together. Therefore, the leader may 

decide that it must drive around the roundabout again, changing the initial path 

calculated by the global planner. This leads to the conclusion that followers, if they 

want to keep being part of the platoon, cannot have a static trajectory generation.  

In this case, the trajectory generation of the follower vehicles is defined by the 

position of the leader that they receive through communication. However, the 

trajectory created will not be smooth or easy to follow.  

In this task, we want to know if a dynamic trajectory generation could improve the 

comfort measured as the lateral acceleration and, if so, what the cost is.  

 

Figure 6 The ODD being considered in EXP 2, where three vehicles in a platoon 

In the next sections the simulation conditions, each trajectory in the benchmark used and 

the metrics will be explained in detail. 

3.1  Trajectory test simulation conditions 

First of all, we need to define some static parameters for every experiment. The scenario is 

the Town03 of the standard map set of CARLA simulator; this scenario has been chosen as the 

better fit in representing urban environments among the default maps provided by the CARLA 

simulator developers; including signalized and unsignalized intersections, as well as 

roundabouts, which are the focus on EXP2. Here we have defined a path with variable 

curvature that can be seen in the Figure 7, the starting point being in A and the ending point 

being in B. 

The vehicle model chosen for this test is the Tesla Model 3 that is available in the Carla 

blueprint library. 
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Figure 7 Trajectory to be performed by the vehicle 

Since the objective is to study the impact of the dynamic trajectory generation in the 

lateral accelerations the speed set point will be fixed, in this case, to 8.3 m/s, which is 

the mandatory speed in urban road with a single track per driving direction in Spain. The 

longitudinal controller will be the same. A PID that uses speed error as input and 

throttle and brake values as output. PID values are Kp=1.0, Ki=0.03 and Kd=0.05. 

Every vehicle will share the lateral controller too. In this case, a simple PID is applied 

to the lateral error calculated between the closes point in the trajectory and a control 

point at 2.5 m in front of the rear axle of the vehicle. PID values in this case are Kp=1.0, 

Ki=0.07 and Kd=0.5. 

The length of every trajectory will be fixed to 40m. 

3.2  Trajectory benchmark 

This benchmark is composed by Bezier curves, splines, and optimization-based 

trajectories. In the Figure 8 a representation of every trajectory tested for a single state 

of the vehicle is presented. 

A 

B 
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Figure 8 Trajectory benchmark applied to the same state 

3.2.1 Bezier curves 

Bezier curves are known for three interesting properties: 

• The possibility of making it tangent in the beginning and in the end of the curve 

to two different directions. 

• Being a curve contained in a convex shape. 

• The fact of being derivable two times, ensuring a continuous curvature 

alongside the curve. 

These curves are defined by the following equation: 

𝐵(𝑡)  = ∑ 𝑏𝑖,𝑛(𝑡)𝑃𝑖 
𝑛
𝑖=0  , 0 ≤ 𝑡 ≤ 1   (3.1) 

Where 𝑃𝑖  are the control points and 𝑏𝑖,𝑛 is the known Bernstein basis polynomial of 

the order n. 

𝑏𝑖,𝑛(𝑡) = (
𝑛
𝑖
)𝑡𝑖 (1 − 𝑡)𝑛−𝑖 , 𝑖 = 0, . . . , 𝑛  (3.2) 

The problem to be solved in formulating these types of curves, therefore, lies in the 

definition of the control points. Depending on the application, some choose to 

calculate them using geometric methods, as in the case of [6], where control points 

are used as boundaries to avoid collisions with other vehicles, or in [7], where the 

control points are defined based on the vehicle's speed to perform lane changes. On 

the other hand, [8] considers it as an optimization problem that may aim to minimize 

the derivative of the curvature, the second derivative of the curvature, or even a 

weighted sum of these. 

This comparison aims to evaluate several methods found in the state of the art. 

 

Vehicle 

pos 
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3.2.1.1 Equidistant points 

One method for defining trajectories for lane changes in autonomous driving is to 

define a total of 6 control points to form 5th-order Bézier curves: 2 points in front of 

the vehicle and 2 points behind the endpoint, tangent to the trajectory. An example is 

shown in Figure 9. This approach allows the control of the curve's aggressiveness by 

adjusting the distance between the parallel points. It is a straightforward method for 

defining control points, with a computational cost that should be much lower than 

solving optimization problems that use iterative methods. 

 

Figure 9 Quintic Bezier curve with equidistant points 

This comparison aims to assess whether using this method dynamically for trajectory 

tracking is feasible. To do so, the distance between points is defined by two factors: a 

fixed distance and a dynamic one. 

𝑑𝑠 = 𝑑𝑓𝑖𝑥 +𝑑𝑑𝑦𝑛    (3.3) 

Where 𝑑𝑓𝑖𝑥  in this case is 0.2 m and 𝑑𝑑𝑦𝑛  can be calculated in three different ways. 

First, proportional to speed, second proportional to the lateral acceleration and third 

a pondered sum of both, speed, and lateral acceleration 

𝑑𝑑𝑦𝑛 = 𝐾𝑣𝑣    (3.4) 

𝑑𝑑𝑦𝑛 = 𝐾𝑎𝑎𝑙𝑎𝑡    (3.5) 

𝑑𝑑𝑦𝑛 = 𝐾𝑣𝑣 +𝐾𝑎𝑎𝑙𝑎𝑡   (3.6) 

Control points 
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In Figure 10 the representation of this trajectory can be seen integrated in a ROS 

environment running in parallel with the CARLA simulator. 

 

Figure 10 Bezier curve with equidistant control points on CARLA environment 

3.2.1.2 Curvature optimization 

We are going to implement a method based on the one shown in the work [8] which 

proposes the calculation of the control points as an optimization problem that 

minimizes the derivative of the curvature. Although the methods shown in the work 

use two consecutive optimization processes, we are going to use a single one due to 

the high computational time shown in the cited article. 

The curvature in a quintic Bezier curve 𝑐(𝑡) = [𝑥(𝑡),𝑦(𝑡)] is defined by the following 

function: 

𝜅 =
�̇�(𝑡)�̈�(𝑡)−�̇�(𝑡)�̈�(𝑡)

√(�̇�(𝑡)2+�̇�(𝑡)2)3
    (3.7) 

Based on the results of that work we chose to use the following cost function: 

𝐽 = ∫ �̇�(𝑠)2𝑑𝑠
𝑠𝑓
𝑠0

    (3.8) 

And lateral distance constrains to ensure the trajectory is within the road. 

In the Figure 11, in white, there is an example of the Bezier curve calculated by using 

the curvature optimization method in the CARLA environment. 
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Figure 11 Bezier curve with curvature optimization method in CARLA environment 

3.2.2 Splines 

Splines are functions defined piecewise by polynomials. In automated driving, they 

are frequently used for trajectory generation, either by directly generating the 

trajectory or by smoothing other planning aspects, such as speed profiles or trajectory 

curvatures. Their strength it bounded by their low computational cost as well as their 

simplicity. In our case, we are going to use them to generate the trajectory itself. 

Additionally, if we are trying to smooth a base path (the reference path in our case) it 

is possible to define how precise the spline should be. 

In this case, we are going to test splines of different degrees as well as splines with 

different smoothing rate. 

In Figure 12, in white, a trajectory generated using the spline approximation can be 

seen. 
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Figure 12 Spline-based trajectory on CARLA environment 

3.2.3 Optimization based trajectories. 

Model predictive control (MPC) is a well-known control method. However, it is 

possible to use it in this case to generate trajectories that consider the dynamics of 

the vehicle alongside other constraints. In our case, the model used will be the 

kinematic vehicle model (Figure 13), also known as the Ackermann model: 

�̇� = 𝑣cos(𝜑 + 𝛽)     (3.9) 

�̇� = 𝑣sin(𝜑 + 𝛽) 

�̇� = 𝑣cos(𝛽)
tan(𝛿)

𝐿
 

𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑙𝑟 𝛿

𝐿
) 

Were 𝑥 and 𝑦 are the coordinates in the reference system of the vehicle, 𝑣 is the 

longitudinal speed, 𝜑 is the orientation of the vehicle, 𝛽 is the angle between the rear 

axle and the control point measured on the center of the turning center (calculated as 

if the vehicle had 100% Ackermann configuration) and 𝐿 and 𝑙𝑟 are the wheelbase and 

the distance from the rear axle to the control point respectively. 𝛿 is the steering angle 

translated to the center of the front axle.  
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Figure 13 Kinematic model 

The cost function is defined to minimize the distance between the trajectory and the 

reference path, as well as the control value change, which in this case would be the 

steering of the vehicle. Therefore, the function can be represented by the following 

equation: 

𝐽 = ∑ (𝑒2𝑄+∆𝑢2𝑅)ℎ
𝑖=0     (3.10) 

Where 𝑄 and 𝑅 are the values that we are going to change in the benchmark. 

Additional constrains to the problem consider distances to the left and right borders 

of the road as well as steering minimum and maximum. 

In Figure 14, in white, the trajectory generated by the optimization method can be 

seen. 

 

Figure 14 Model-based trajectory generation on CARLA environment 
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3.3 Comparison metrics 

To measure the performance of the vehicle as well as the quality of the trajectories 

generated, we have established four groups of metrics or Performance Indicators (PI). 

Metric Description Unit 
𝑎𝑙𝑎𝑡_𝑚𝑎𝑥 Maximum lateral acceleration 𝑚 𝑠2⁄  
𝑎𝑙𝑎𝑡_𝑎𝑣𝑔 Average lateral acceleration 𝑚 𝑠2⁄  

𝑒𝑙𝑎𝑡_𝑎𝑣𝑔 Average lateral error to traj 𝑚 

𝑒𝑎𝑛𝑔_𝑎𝑣𝑔 Average angular error to traj 𝑟𝑎𝑑 

𝑒𝑙𝑎𝑡_𝑎𝑣𝑔_𝑐𝑒𝑛𝑡 Average lateral error to center 𝑚 

𝑒𝑎𝑛𝑔_𝑎𝑣𝑔_𝑐𝑒𝑛𝑡 Average angular error to center 𝑟𝑎𝑑 

𝑒𝑙𝑎𝑡_𝑚𝑎𝑥 Max lateral error to traj 𝑚 

𝑒𝑎𝑛𝑔_𝑚𝑎𝑥 Max angular error to traj 𝑟𝑎𝑑 

𝑒𝑙𝑎𝑡_𝑚𝑎𝑥_𝑐𝑒𝑛𝑡 Max lateral error to center 𝑚 

𝑒𝑎𝑛𝑔_𝑚𝑎𝑥_𝑐𝑒𝑛𝑡 Max angular error to center 𝑟𝑎𝑑 

𝑒𝑎𝑣𝑔 Average error traj to center 𝑚 

𝑒𝑚𝑎𝑥 Max error traj to center 𝑚 

𝑘𝑛𝑜𝑟𝑚_𝑚𝑎𝑥 Normalized max curvature 1 𝑚⁄  
𝑘𝑛𝑜𝑟𝑚_𝑎𝑣𝑔 Normalized average curvature 1 𝑚⁄  

𝑒𝑘𝑛𝑜𝑟𝑚_𝑚𝑎𝑥 Normalized max curvature error 1 𝑚⁄  

𝑒𝑘𝑛𝑜𝑟𝑚_𝑎𝑣𝑔 Normalized average curvature error 1 𝑚⁄  

𝑡𝑎𝑣𝑔 Average computation time 𝑠 

𝑡𝑚𝑎𝑥 Max computation time 𝑠 

Table 2 Performance metrics 

3.3.1 Dynamic performance indicators 

Here, in the blue section of Table 2, we gather the PI related to vehicle dynamics. In 

this case, we consider the maximum and average lateral acceleration during the 

simulation (𝑎𝑙𝑎𝑡_𝑚𝑎𝑥  and 𝑎𝑙𝑎𝑡_𝑎𝑣𝑔). Although comfort is a subjective matter, there are 

some studies that have tried to measure it. In the work [9] lateral accelerations 

between 3.1 and 7.5 𝑚/𝑠2 are considered very uncomfortable. Therefore, one of the 

objectives will be to find a method that makes the vehicle perform under those values. 

3.3.2 Vehicle error performance indicators 

Here, we consider how the vehicle was able to follow the dynamic and global 

trajectories. For that, we will consider the maximum and average angular and lateral 

error to the dynamic trajectory (𝑒𝑙𝑎𝑡_𝑎𝑣𝑔 , 𝑒𝑎𝑛𝑔_𝑎𝑣𝑔 , 𝑒𝑙𝑎𝑡_𝑚𝑎𝑥  and 𝑒𝑎𝑛𝑔_𝑚𝑎𝑥 ) and the 

global path (𝑒𝑙𝑎𝑡_𝑎𝑣𝑔 _𝑐𝑒𝑛𝑡 , 𝑒𝑎𝑛𝑔_𝑎𝑣𝑔_𝑐𝑒𝑛𝑡 , 𝑒𝑙𝑎𝑡_𝑚𝑎𝑥_𝑐𝑒𝑛𝑡  and 𝑒𝑎𝑛𝑔_𝑚𝑎𝑥_𝑐𝑒𝑛𝑡). Therefore, 

we have a total of 8 PIs (lines in red of the Table 2). 
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Figure 15 Lateral and angular error representation 

3.3.3 Geometry error performance indicators 

Here, we check how fit the trajectory is. First, we want to know the maximum and 

average curvature of the dynamic trajectories along the simulation. Then we have four 

PIs destined to compare the dynamic trajectories to the global path. We want to check 

the curvature difference between each trajectory and its static counterpart by 

measuring the maximum and average curvature difference. Also, we will compare the 

average and maximum distance between the dynamic trajectory and the global path 

(lines in green in the Table 2). 

3.3.4 Time Performance indicators 

Time performance indicators are a recursive study point when it comes to trajectory 

generation. After all, they define how often a new trajectory can be calculated and, 

therefore, how reactive the vehicle can be. An ideal dynamic trajectory generator 

should publish the trajectory at a higher frequency than the control. However, the 

computation demand is higher most of the time, so the usual approach is to either 

combine both trajectory generation and control (using an MPC, for example) or to 

increase the length of the path. This last approach can make the vehicle better at 

predicting the behavior of its surroundings, but it would lose maneuverability. 

The PI considered here will be the average and maximum computation time (the 

purple lines in the Table 2) of each trajectory generation method tested. These values 

are measured from the receiving of the global trajectory until the dynamic trajectory 

is published in a ROS topic. 

  

𝑒𝑙𝑎𝑡 

𝑒𝑎𝑛𝑔 ref 
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 EXP4 

4.1Introduction 

The objective in EXP4 is to perceive and control a vehicle in the context of an 

unstructured road use case (specifically road works). The experiment first revolves 

around perceiving the environment to update the high-definition map. This 

information is then used by the motion planning module to follow a safe trajectory. 

The ODD considered in EXP4 is depicted in Figure 16, in which given a two-lane road, 

a single lane is blocked by traffic bollards, thus, the lane structure is modified 

according to the position of the bollards. 

 

Figure 16 The ODD being considered in EXP4 

4.2  HD-Map Update Using Detected Bollards 

Our proposed system seeks to update the high-definition map in real-time based on 

the detected road work bollards in the scene. By updating the HD-map in real-time, 

we propose to enable more efficient motion planning that can constrain more 

effectively the candidate trajectories.  

To this end, we propose specifically to update the HD map according to the observed 

roadworks bollards (using data obtained only from the camera and GPS). Our 

approach will assume a specific ODD, namely, a 2-lane road with one lane being 

blocked by road works. Our workflow is shown in Figure 17 and is composed of the 

following steps: 1) 2D detection of road work bollards, 2) 2D->3D estimation of the 

road work bollards, 3) generation of plausible lane boundaries and 4) update of HD-

map based on the plausible lane boundary. A full description of the modules is given 

in D3.2. 

 

Figure 17 Workflow for detection of bollards to update HD-map. 

The output produced by the perception platform is shown in Figure 18, where the road 

boundaries are updated according to the location of the bollards. In this example the 
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map frame (against the original map frame HD-map shown by the green lines). The 

red lines on the right panel are the left boundary of the drivable road, and the blue 

line is the right boundary of the drivable road. The light blue lines are the centerlines 

of the lane/s. 

 

Figure 18 The environment and data gather (left). The lane boundary (red) based on HD 
Map(green) and Final system shows the updated HD-map 

 

4.3 Dynamic Trajectory Generation with Adaptive Lane Boundaries 

To enhance the motion planning framework, a dynamic trajectory generation method 

is required to effectively incorporate lane boundaries into the decision-making 

process. Optimization techniques based on quadratic errors are well-suited for this 

purpose, as they can accommodate dynamic constraints, allowing for real-time 

adjustments. In this context, we implemented a model-based predictive trajectory 

generator utilizing a kinematic vehicle model, which is a standard choice for 

developing Model Predictive Control (MPC) in low-speed scenarios. Notably, this 

method mirrors the approach studied in EXP2, reinforcing its applicability in various 

motion planning scenarios. 
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Figure 19  Trajectory generation using dynamic lanes from HD map 

To integrate the dynamic lane boundaries, it is essential to discretize them in a manner 

consistent with the reference trajectory. This discretization ensures that the vehicle's 

motion planning can adapt to changes in the lane geometry, allowing for smoother 

navigation while adhering to safety regulations. By continuously updating the lane 

boundary data, the motion planner can dynamically adjust the vehicle's path in 

response to shifting lane conditions, optimizing both trajectory accuracy and vehicle 

stability. This approach not only enhances the vehicle's ability to navigate through 

varying environments but also ensures that it remains within the safe confines of the 

road, even in the presence of obstacles or changes in lane configuration. 

  

Lane borders 

Lane centers 

Reference 

Vehicle 
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 EXP8 (TUD) 
Experiment 8 (EXP8) focuses on the "Emergency evasion manoeuvre on slippery road 

under rain conditions". The objective is to avoid collisions (e.g., pedestrians or cyclists) 

in poor weather conditions on slippery roads. 

5.1 SoTA 

The state-of-the-art methods for motion planning were discussed in D4.1 “Initial 

version of motion planning and behavioural decision-making components”. Based on 

this analysis, the integration of motion planning, path tracking, and vehicle stability 

constraints has been selected using the Model Predictive Contouring Controller 

(MPCC). The MPCC employs an iterative approach to solving an optimal control 

problem, enabling the vehicle to maintain a low-risk, safe trajectory while successfully 

avoiding obstacles [10] [11]. 

Our recent research [10] showcases the application of the MPCC framework in high-

speed collision avoidance scenarios, primarily when the vehicle is operating near its 

handling limits. This framework forms the basis of the proposed architecture [12] [1]. 

However, several enhancements are necessary to optimise the MPCC algorithm for 

emergency evasive manoeuvres on slippery roads, particularly under rainy conditions. 

These improvements are focused on three key areas: the vehicle prediction model, 

the tyre model, and the integration of uncertainties from the perception model into 

the optimal control problem formulation. 

The vehicle prediction model has been refined to account for varying operational 

conditions encountered during evasive manoeuvres on slippery roads, such as the 

need for lower velocities due to a reduced road friction coefficient. The proposed tyre 

model is also more advanced, providing greater accuracy in representing combined 

slip conditions, which is critical for maintaining traction and stability in such scenarios. 

Furthermore, the obstacle representation within the MPCC has been enhanced by 

incorporating uncertainties derived from the perception module. This integration 

reduces the conservativeness typically associated with evaluating the distance 

between the vehicle and obstacles, leading to more precise and reliable collision 

avoidance strategies. 

5.2Architecture 

The proposed MPCC for path tracking and motion replanning is integrated into 

Autoware as a replacement for the separated controllers for lateral and longitudinal 

dynamics, shown in Figure 20. The proposed controller tracks the trajectory of the 

motion planner when the vehicle is at a safe distance from the obstacles. As soon as 

the provided trajectory passes too close to the obstacle or it is unfeasible due to the 
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lower complexity of the prediction model, the proposed MPCC will perform a motion 

replanning to keep the vehicle at a safe distance from the obstacles. 

 

Figure 20 The architecture of the proposed MPCC in the Autoware ROS stack 

5.3Algorithmic Approach 

The proposed approach employs a nonlinear single-track vehicle model, which was 

selected in favour of the double-track vehicle model due to its balanced trade-off 

between accuracy and computational efficiency [13], [14], [15]. This model focuses 

solely on in-plane dynamics, omitting the effects of lateral weight transfer as well as 

roll and pitch dynamics to simplify the computational load. The vehicle's position is 

represented in a Cartesian reference frame through the state vector 𝑥 =

[𝑋, 𝑌, 𝜙, 𝑣𝑥, 𝑣𝑦 , 𝑟, 𝜃, 𝛿, 𝐹𝑥], which includes the longitudinal position (X), lateral 

position (Y), and the heading angle (ϕ) of the vehicle's center of gravity (CoG) relative 

to an inertial frame. The velocity components consist of the longitudinal and lateral 

velocities at the CoG, denoted by 𝑣𝑥 and 𝑣𝑦, respectively, along with the yaw rate 𝑟. 

Additionally, an extra state variable θ is introduced to track the vehicle's travelled 

distance, which is utilized in the MPCC cost function to determine the vehicle's 

position relative to a reference path. The control inputs are the rate of the steering  

angle 𝛿 and the longitudinal force 𝐹𝑥. The corresponding state derivatives �̇�) are 

derived from the following equations, providing the necessary dynamics for the 

vehicle's motion. 

[
 
 
 
 
 
 
�̇�
�̇�

ϕ̇
𝑣�̇�
𝑣�̇�

�̇�
�̇�
 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝑣𝑥 cos ϕ − 𝑣𝑦 sin 𝜙

𝑣𝑥 sin 𝜙 + 𝑣𝑦 cos 𝜙
𝑟

1

𝑚
(𝐹𝑥 −𝐹𝑓,𝑦 sin 𝛿 − 𝐹𝑥,𝑑𝑟𝑎𝑔) + 𝑣𝑦𝑟
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𝑚
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1

𝐼𝑧𝑧
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2 + 𝑣𝑦

2 ]
 
 
 
 
 
 
 
 

   (5.1) 
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One issue with the dynamic bicycle model, 𝑓𝑑𝑦𝑛(𝑥, 𝑢) , is that it becomes ill-defined at 

low velocities due to the dependence on slip angles. However, low velocities are 

relevant for an evasive manoeuvre on slippery roads, where the vehicle can 

significantly slow down due to the reduced friction coefficient. The most common 

solution is the implementation of kinematic models [16], which do not rely on slip 

angles. However, kinematic models are unsuitable for evasive manoeuvres on slippery 

roads because they do not account for the interaction between the tyres and the 

ground [17]. 

To achieve the optimal integration of both models within a single framework, we 

propose a vehicle model that combines dynamic and kinematic elements [17]. This is 

possible because the kinematic model is formulated to account for the same state 

variables of the dynamic model. Thus, �̇�𝑥 and 𝑣�̇� within the kinematic model are 

derived by differentiating the variables 𝑣𝑦,𝑘𝑖𝑛 and 𝑟𝑘𝑖𝑛, which are described as follows: 

𝑣𝑦,𝑘𝑖𝑛 = 𝑙𝑟 𝑟𝑡𝑎𝑟      (5.2) 

𝑟𝑘𝑖𝑛 =
tan(𝛿)𝑣𝑥
𝑙𝑓 + 𝑙𝑟

 

where 𝑟𝑡𝑎𝑟  corresponds to the steady state yaw rate, which is computed as follows: 

𝑟𝑡𝑎𝑟 =
𝛿𝑣𝑥

𝑙𝑓+𝑙𝑟
     (5.3) 

The new vehicle kinematic model, 𝑓𝑘𝑦𝑛(𝑥, 𝑢), is computed as follows: 

[
 
 
 
 
 
 
�̇�
�̇�

ϕ̇
𝑣�̇�
𝑣�̇� 

�̇�
�̇�
 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑣𝑥 cos 𝜙 − 𝑣𝑦 sin 𝜙

𝑣𝑥 sin 𝜙 + 𝑣𝑦 cos 𝜙
𝑟

𝐹𝑥−𝐹𝑥 ,𝑑𝑟𝑎𝑔

𝑚

(�̇�𝑣𝑥 +𝛿𝑣�̇�)
𝑙𝑟

𝑙𝑟+𝑙𝑓

(�̇�𝑣𝑥 +𝛿𝑣�̇�)
1

𝑙𝑟+𝑙𝑓

√𝑣𝑥
2 + 𝑣𝑦

2 ]
 
 
 
 
 
 
 
 
 

     (5.4) 

The resulting model, represented as �̇� = 𝑓(𝑥,𝑢),is formulated using the same state 

variables for both models, enabling their integration. The final vehicle model is then 

created by linearly combining these two models as follows: 

�̇� = 𝜆𝑓𝑑𝑦𝑛(𝑥, 𝑢) + (1 − 𝜆)𝑓𝑘𝑖𝑛(𝑥, 𝑢) = 𝑓(𝑥, 𝑢)   (5.5) 

𝜆 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (
𝑣𝑥 − 𝑣𝑥,𝑚𝑖𝑛

𝑣𝑥,𝑚𝑎𝑥 − 𝑣𝑥,𝑚𝑖𝑛 
, 0) , 1) 
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The models are combined only within the velocity range 𝑣𝑥 in [𝑣𝑥,𝑚𝑖𝑛 , 𝑣𝑥,𝑚𝑎𝑥]. For 

velocities below 𝑣𝑥,𝑚𝑖𝑛 , we rely exclusively on the kinematic model, while for 

velocities above 𝑣𝑥,𝑚𝑎𝑥 , we use only the dynamic model [17]. This work assumes that 

𝑣𝑥,𝑚𝑖𝑛 = 4 m/s and 𝑣𝑥,𝑚𝑎𝑥 = 5 m/s to avoid continuous switches between the 

kinematic and dynamic models. 

The vehicle parameters are reported in Table 3 Vehicle parameters 

. 

Parameters Symbol Value 

Vehicle mass, kg 𝑚 1564 
Vehicle inertia around the z-axis, kg m2 𝐼𝑧𝑧 2473 

Distance between the front axle to CoG, m 𝑙𝑓 1.050 

Distance between the rear axle to CoG, m 𝑙𝑟 1.651 
Air density, kg/m3 𝜌 1.204 

Drag coefficient, [-] 𝐶𝑑1 0.25 
Rolling resistance, N 𝐶𝑑0 45 

Vehicle frontal area, m2 𝐴𝑓  2.4 

Table 3 Vehicle parameters 

Extended Fiala Tyre Model 

The challenging weather conditions require a high level of accuracy for the prediction 

model. Thus, in the EVENTS project, the lateral tyre forces of the single-track vehicle 

model are described by an extended Fiala tyre model [11]. This model builds upon the 

classic Fiala tyre model, which is based on pure slip conditions, meaning that 

longitudinal and lateral slips are decoupled. Since the combined dynamics should be 

considered, the Fiala tyre model has been enhanced by incorporating modifications 

that account for variations in cornering stiffness due to changes in longitudinal and 

vertical forces [18]. Additionally, the saturation region of the model is adjusted to 

include a negative gradient, which prevents the prediction model from overestimating 

the maximum lateral force when the tyre operates at high lateral slip angles, such as 

during evasive manoeuvres in poor weather conditions. The extended Fiala tyre model 

is defined as follows: 

𝐹𝑦(𝛼,𝐹𝑥, 𝐹𝑧) =

{
 
 

 
 −𝐶𝑦𝑚(𝐹𝑥, 𝐹𝑧) tan𝛼 +

𝐶𝑦𝑚
2 (𝐹𝑥,𝐹𝑧)tan𝛼 tan|𝛼|

3𝐹𝑦,,𝑚𝑎𝑥
−
𝐶𝑦𝑚
3 (𝐹𝑥,𝐹𝑧)tan

3𝛼

27𝐹𝑦,,𝑚𝑎𝑥
2 𝑖𝑓|𝛼| ≤ 𝛼𝑡ℎ𝑟

2𝐶𝑦𝑚(𝐹𝑥,𝐹𝑧)(𝜁−1)tan𝛼

3
−
𝐶𝑦𝑚
2 (𝐹𝑥,𝐹𝑧)(𝜁−1)tan𝛼 tan|𝛼|

9𝐹𝑦,𝑚𝑎𝑥
+

−𝐹𝑦,𝑚𝑎𝑥𝜁𝑠𝑖𝑔𝑛(𝛼)
|𝛼| > 𝛼𝑡ℎ𝑟

  (5.6) 

The tire slip angle, denoted by α, represents the angle between the direction the tire 

is pointing and the actual direction of travel. The tire cornering stiffness, 𝐶𝑦𝑚, is a 

function of both the vertical 𝐹𝑧  and longitudinal 𝐹𝑥 tire forces. The maximum lateral 

tire force is represented by 𝐹𝑦,𝑚𝑎𝑥 , while 𝛼𝑡ℎ𝑟  denotes the slip angle threshold at 
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which the tire's lateral force peaks. The parameter ζ, which ranges between 0 and 1, 

characterizes the gradient of the tire force in the saturation region. 

When |𝛼| ≤  𝛼𝑡ℎ𝑟, and apart from the influence of 𝐹𝑥 (which affects even at low slip 

angles), the extended Fiala model behaves akin to the classic Fiala tire model [19]. In 

contrast, when |𝛼| > 𝛼𝑡ℎ𝑟, the saturation region is modified to better represent the 

reduction in maximum lateral force at large slip angles. Despite these modifications, 

the proposed model retains the advantages of the classic Fiala tire model, ensuring 

continuity and differentiability at |𝛼| = 𝛼𝑡ℎ𝑟. 

The presence of a non-zero gradient in the saturation region benefits numerical 

optimization algorithms that rely on gradient calculations, preventing derivative 

vanishing and improving the optimization of the road wheel angle when the tire 

operates in the saturation region [20]. Moreover, the proposed model exhibits a 

positive gradient when ζ is within the range [1,2] and a negative gradient when ζ is 

within [0,1]. 

The adaptation of the cornering stiffness 𝐶𝑦 based on the vertical force 𝐹𝑧  [18] can be 

expressed using the following equation: 

𝐶𝑦(𝐹𝑧) = 𝑐1𝐹𝑧 ,0 sin (2atan (
𝐹𝑧

𝑐2𝐹𝑧0
))   (5.7) 

In this equation, 𝑐1 and 𝑐2 are optimised constants and 𝐹𝑧0 represents a nominal 

vertical force. The cornering stiffness is further adjusted to account for its dependency 

on the longitudinal force 𝐹𝑥 as follows: 

𝐶𝑦𝑚(𝐹𝑥, 𝐹𝑧) =
1

2
(𝜇𝐹𝑧 −𝐹𝑥 )+ (1 − (

|𝐹𝑥|

𝜇𝐹𝑧
)
𝑐3
)
−𝑐3

(𝐶𝑦(𝐹𝑧)−
1

2
𝜇𝐹𝑧) (5.8) 

where 𝑐3 is an optimised parameter, and 𝜇 denotes the friction coefficient. The 

𝐶𝑦𝑚(𝐹𝑥, 𝐹𝑧) is used to compute the tyre slip threshold 𝛼𝑡ℎ𝑟  as follows: 

𝛼𝑡ℎ𝑟 =
3 𝐹𝑦,𝑚𝑎𝑥

𝐶𝑦𝑚 (𝐹𝑥 ,𝐹𝑧)
     (5.9) 

The maximum lateral tyre force 𝐹𝑦,𝑚𝑎𝑥  is limited by the tyre friction circle, defined as 

follows: 

𝐹𝑦,𝑚𝑎𝑥 = √(𝜇𝐹𝑧)
2 −𝐹𝑋

2    (5.10) 

All the parameters utilized in the extended Fiala tyre model are detailed in Table 4 Tyre 
parameters 

. Their values were determined through a nonlinear optimization process [21], which 

involved aligning the lateral tyre forces predicted by the proposed extended Fiala tyre 

model with those from a high-fidelity Delft-Tyre model 6.2. 
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Parameters Symbol Value 
Lateral cornering stiffness effect, [-] 𝑐1 53.3 

Lateral cornering stiffness peak effect, [-] 𝑐2 6.8 

Long. and Lat. tyre force coupling effect, [-] 𝑐3 3.5 
Nominal vertical tyre force (as in .tir property file), N 𝐹𝑧0 4300 

Tyre friction coefficient, [-] 𝜇 0.5 
Table 4 Tyre parameters 

Obstacle Representation 

The objective of the proposed MPCC is to perform collision avoidance in poor weather 

conditions on slippery roads. The obstacles (e.g. pedestrian or cyclist) are represented 

as circle which radius 𝑅𝑜𝑏𝑠  is provided by the vehicle perception unit. Utilizing data 

from 3D object detection, the 𝑅𝑜𝑏𝑠  is enlarged by the evaluated uncertainties, which 

are assumed Gaussian. The obstacle of the radius considering the perception 

uncertainties is computed as follows: 

𝑅𝑜𝑏𝑠+𝑢𝑛𝑐 = 𝑅𝑜𝑏𝑠 +√𝜒2
2(𝑝)𝜆𝑚𝑎𝑥(Σ𝑥𝑦)   (5.11) 

Where 𝜒2
2(𝑝) represents the value of the chi-squared distribution corresponding to a 

maximum violation probability of 𝑝 = 0.95 [22]. Regarding 𝜆𝑚𝑎𝑥(Σ𝑥𝑦), it refers to the 

maximum eigenvalue of the variance matrix associated with obstacle localization. This 

variance can either be treated as a constant or dependent on the distance between 

the vehicle and the obstacle. For instance, the variance decreases as the vehicle 

approaches the obstacle. In the context of the EVENTS project, the term 𝑅𝑜𝑏𝑠+𝑢𝑛𝑐  is 

integrated into the MPCC cost function to encourage the vehicle to maintain a safer 

distance from the obstacle. 

The qualitative behaviour of the developed controller is illustrated in Figure 21 and 

Figure 22. In both figures, the behaviour of the proposed MPCC in a scenario with two 

obstacles in a low friction road is depicted. The four instances of the evasive 

manoeuvre are visible in chronological order.  

5.4Outlook and Future Works 

The proposed controller can successfully work at high and low velocities in slippery 

conditions based on qualitative results. A detailed quantitative validation is planned, 

including a comparison with the default Autoware planner , which will be reported in 

D6.2 “Technical evaluation results”. 
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Figure 21 Behaviour of the proposed MPCC in evasive manoeuvre 

 

 

Figure 22 Behaviour of the proposed MPCC in poor friction condition 
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 Conclusions 
The aim of this document is to illustrate the final developments in Task 4.1 (T4.1), with 

a focus on motion planning, which will be implemented and tested across selected 

experiments in the project. Results and quantitative analyses are planned in future 

deliverables, specifically the ones in WP6 (particularly T6.2 dealing with the technical 

evaluation of the EVENTS systems in different scenarios and T6.3, aimed at performing 

the full quantitative outcomes and at validating the module’s performance). In this 

context, D4.2 considers only some experiments (EXPs), because not everyone 

develops both motion and behavioural planning (depending on the goal of each EXP). 

Therefore, motion planning will be developed and tested for EXP1, EXP2, EXP4, and 

EXP8. 

Each experiment includes a dedicated description of how the module is adapted to 

meet its requirements. The algorithms and methodologies used for motion planning 

have been specifically tailored and optimized for each experiment, detailing its 

development and integration into various experimental setups. It is worth noting here 

that these EXPs are concurrently integrated within both the simulation environment 

and the real-world platform, forming the core of ongoing work in WP5. 

Considering the different descriptions of the motion planning algorithms and methods 

– as explained in Sections 2-5 – there are some common aspects that we want to 

highlight here. First, high computational time is a main concern in EVENTS applications 

because of the need to run these algorithms in real-time and online in specific 

demonstrators (independently of the fact they are prototype vehicles or driving 

simulators). Based on that, it was necessary to make some decisions in terms of the 

choice of algorithms, to ensure the trade-off between accuracy and computational 

efficiency. Secondly, the MPC approach has been considered in almost all the 

experiments, including its possible variances to solve specific problems (i.e., see EXP1 

and EXP8). The rationale is that MPC is a well-known control method, with the 

possibility to use it to generate trajectories that consider the dynamics of the vehicle 

alongside other constraints. Finally, the methodologies described in each EXP have 

shown the importance of having a combined approach between data collected in 

simulation and in a real-world context. This is essential to have a strong design-

development-testing loop of the different motion planning algorithms. 

To sum up, deliverable D4.2 represents a comprehensive overview of WP4/T4.1 

progress, pointing out the last next steps that will be finalized in WP5 (for the 

integration) and in WP6 (for the evaluation of the full E2E chain). 
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