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Executive Summary 
Work Package (WP) 3 addresses the development of the environment perception 

system and its self-assessment (SA) within the EVENTS project. The environment 

perception system involves on-board sensing (using camera, radar, LiDAR), supported 

by localization technology (GNSS+INS) and High-Definition (HD) digital maps, and is 

potentially augmented by Vehicle-to-Everything (V2X) communication technologies. 

WP3 provides the algorithmic content of the perception modules described in EVENTS 

architecture (see Deliverable (D) 2.2 Error! Reference source not found.) to address t

he set of challenging driving scenarios, called Experiments (EXP1-EXP8), specified in 

D2.1 Error! Reference source not found.. 

D3.2 covers all work done within WP3 and its tasks (T3.1-T3.5). T3.1 involves the 

acquisition and adaptation of training data needed for the machine learning-based 

approaches. T3.2 covers the topic of semantic scene analysis and precise localization. 

T3.3 involves work on the integration of past and current measurements from on-

board sensors to obtain the current environment state. Furthermore, it involves a 

prediction of how the latter will evolve over time. T3.4 is on the topic of augmented 

perception by V2X, extending the on-board perception of the ego-vehicle with 

information coming from other Connected and Automated Vehicles (CAVs) or 

infrastructure sensors. Finally, T3.5 covers perception system SA.  

Rather than structuring D3.2 by the beforementioned tasks, it is structured by the 

Experiments (EXP1 – EXP8). This provides a more integrated view of how the various 

tasks work together in the perception subsystem to address the different driving 

scenarios. The sole exception is T3.1, which is discussed separately, as it pertains to 

training data acquisition and adaptation that in principle applies to multiple 

Experiments. Specifically, in T3.1, we explore the usage of existing public datasets, 

describe a newly acquired road debris dataset, cover data generation based on 

manual annotation and simulation, and present an approach for self-supervised 

learning for object detection.  

EXP1 addresses safe, comfortable, and time-efficient automated driving in complex 

urban environment while interacting with VRUs (e.g. pedestrians, cyclists). A LiDAR-

based environment perception pipeline was developed, combining an object detector 

trained on a set of predefined classes (e.g. car, bike, and pedestrian) with a class-

independent obstacle segmentation. A multi-object tracker tracks detected objects 

across time, and a motion prediction component predicts the future path of each 

tracked object. EXP2 deals with the reconfiguration of a platoon formation after a split 

due to a roundabout. A cooperative motion prediction framework was developed 

based on a state-of-the-art (SOTA) model. The results demonstrate that V2V-

enhanced predictions achieve a better understanding of the traffic scene. EXP3 
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concerns with safe automated driving in a complex urban environment with occlusion. 

It demonstrates the integration of reliability assessment outputs of environment state 

estimation (on-board SA methods) and V2X data into an onboard perception system. 

The main outcome of EXP3 is the development of an SA approach for object-tracking 

algorithms. EXP4 addresses decision making for motion planning when faced with 

roadworks, unmarked lanes and narrow roads with assistance from perception SA. A 

pipeline for updating a pre-existing HD map under road work conditions was 

developed. The model assumes traffic bollards are being used to separate drivable vs 

non-drivable lanes, where such bollards are then used to determine the updated lane 

boundary. EXP5 involves predictive perception and perception SA at merger onto the 

highway. A predictive perception system was developed that can reliably detect and 

track multiple 3D objects moving at various speeds in real-time and forecast their 

future movements based on historical trajectories. Perception monitoring through 

consistency checking is also implemented. EXP6 concerns the sensing of small objects 

and semantic representation of these objects (relative position, height, object 

velocity, over-drivability and estimation of time to collision) within diverse weather 

conditions. An over-drivability classifier has been trained on the newly collected debris 

dataset with promising results. EXP7 considers localization and perception SA 

mechanisms for advanced ACC under adverse weather or adverse road conditions. SA 

mechanisms for LiDAR-based 3D object detection and relative localization to the 

leading vehicle were developed. These mechanisms were evaluated using public 

datasets and demonstrated superior performance compared to the current state-of-

the-art. EXP8 concerns emergency evasion maneuver under adverse weather 

conditions including perception SA. A radar point cloud segmentation network was 

developed to provide object detection, ego-motion estimation, and SA as an input for 

the maneuver planning.  
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1. Introduction 

1.1 Project aim 

Driving is a challenging task. In our everyday life as drivers, we are facing unexpected 

situations we need to handle in a safe and efficient way. The same is valid for 

Connected and Automated Vehicles (CAVs), which also need to handle these 

situations, to a certain extent, depending on their automation level. The higher the 

automation level is, the higher the expectations for the system to cope with these 

situations are. 

In the context of this project, these unexpected situations, where the normal 

operation of the CAV is close to be disrupted, - e.g. the Operational Design Domain 

(ODD) limit is reached due to traffic changes, harsh weather/light conditions, 

imperfect data, sensor/communication failures - are called “events”. EVENTS is also 

the acronym of this project. 

Today, CAVs are facing several challenges (e.g. perception in complex urban 

environments, Vulnerable Road Users (VRUs) detection, perception in adverse 

weather and low visibility conditions) that should be overcome to be able to drive 

through these events in a safe and reliable way. 

Within our scope, and in order to cover a wide area of scenarios, these kinds of events 

are clustered under three main use cases: a) Interaction with VRUs, b) Non-Standard 

and Unstructured Road Conditions and c) Low Visibility and Adverse Weather 

Conditions. 

Our vision in EVENTS is to create a robust and self-resilient perception and decision-

making system for Automated Vehicles (AVs) to manage different kinds of “events” on 

the horizon. These events result in reaching the AV limitations due to the dynamic 

changing road environment (VRUs, obstacles) and/or due to imperfect data (e.g., 

sensor and communication failures). The AV should have those events within its ODD 

and continue the operation safely. When the system cannot handle the situation, an 

improved minimum risk manoeuvre should be put in place. 

1.2 Deliverable scope and content 

Within EVENTS, WP3 addresses the development of the perception system, including 

localization and SA. The perception system consists of on-board perception (using 

camera, radar, and LiDAR sensors), which is supported by localization (using GNSS and 

INS), HD digital maps, and augmented by cooperative approaches (through V2X 

communication). 

The objectives of WP3 are: 
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• Acquisition and adaptation of training data needed for machine learning-

enabled perception systems to address the EVENTS use cases. 

• Development of solutions for robust perception in complex urban traffic and 

urban area parks, which often feature a less structured road layout (e.g. 

unclear/non-existent road markings, narrow roads, and bridges). These 

settings might also be cluttered (e.g., infrastructure like traffic poles, lights and 

signs, or parked cars), and often involve close encounters with (possibly 

multiple) road users (e.g., VRUs), potentially approaching from various 

directions. 

• Addressing the challenges of perception in poor visibility conditions due to 

lighting (e.g., night-time, blinding low-standing sun), adverse weather (e.g., 

rain, snow, fog), or other sensor impairments. 

• Developing techniques for augmenting the on-board perception by using V2X 

information (e.g., Cooperative Awareness Messages (CAM), or Collective 

Perception Messages (CPMs) from other connected vehicles and/or from the 

road infrastructure. 

• Development of methods for SA of perception systems that can detect 

deviations from the intended acceptable performance standards. These 

deviations may arise due to a variety of reasons, such as sensor impairments 

and noise, sensor de-calibration, faults in system components, or errors 

caused systems’ misuses. 

WP3 is structured in 5 sub-tasks (task leader is listed between brackets): 

• Task 3.1 Training data acquisition and adaptation (ICCS) 

• Task 3.2 Semantic scene analysis and precise localization (HIT) 

• Task 3.3 Environment state estimation and motion prediction (TUD) 

• Task 3.4 Augmented perception by V2X (UULM) 

• Task 3.5 Perception system SA (WMG) 

WP3 outputs will be used in WP4, as the decision-making and motion planning of WP4 

strongly depends on the perception output. The validated perception system will be 

delivered to WP5 to be integrated in the overall EVENTS system. 

Two Deliverables cover WP3 activities within the project: D3.1 and D3.2. The earlier 

submitted D3.1 [25] offered an intermediate snapshot of the work done in T3.1 – T3.4. 

The current D3.2 describes the final outcome of WP3, including T3.5 activities. This 
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Deliverable mainly describes methodology and provides qualitative results. Rigorous 

quantitative evaluation is left for D6.2 (“Technical Evaluation Results”).  

The remaining main sections of the document correspond to T3.1 and the EVENTS 

Experiments. The following sub-section recaps the latter. 

1.3 Experiments (EXPs) 

Table 1 recaps the experiments that were selected for demonstration by the EVENTS 

consortium, as specified in Deliverable D2.1 Error! Reference source not found.. It p

rovides the motivation for the various perception and localization approaches 

discussed in this Deliverable.  

Table 1: Addressable experiments within EVENTS. 

EXP1 - TUD 
Interaction with VRUs in 
complex urban 
environment 

 

EXP1 is about safe, comfortable, and time-efficient 
automated driving in complex urban environment while 
interacting with VRUs (e.g., pedestrians, cyclists). The 
environment perception, road user motion prediction, 
motion planning and vehicle control will be demonstrated in 
a single integrated system on-board TUD’s own vehicle 
prototype. The experiment consists of the ego-vehicle 
driving on a two-lane road (i.e., one lane on each side) 
whereas several VRUs might (or might not) move into the 
vehicle’s path (e.g., crossing, walk longitudinally, swerve), 
possibly from behind occlusions (e.g., parked vehicles). The 
question is whether to decelerate, accelerate, or steer away.  

EXP2 – TECN, ICCS 
Re-establish platoon 
formation after split due to 
roundabout 

 
 

EXP2 incorporates perception augmentation via safe 
integration of collective perception (CP) info, predictive 
planning for the control of the platooning in an urban 
environment, management of the platooning behavior (T4.2) 
and design of a safe operational model for when an attached 
vehicle is in the platoon (T4.3). AV control takes advantage 
of augmented perception (inside and outside CAVs’ FOV) 
offered by fusion of CAMs and CPMs (T3.4 and T3.5) shared 
by other road users and platoon members. 

EXP3 - UULM 
Self-assessment and 
reliability of perception 
data with complementary 
V2X data in complex urban 
environments 

 

EXP3 is concerned with safe automated driving in a complex 
urban environment with occlusion, to demonstrate the 
integration of reliability assessment outputs of environment 
state estimation (onboard SA methods) and V2X data into an 
onboard perception system. The experiment will be 
conducted both in a virtual and a real environment. The 
former will be simulation-based, and it will be primarily 
concerned with developing a SA layer for the perception data 
(T3.5) along with complementary V2X data (T3.4). The latter 
will be realized in UULM’s vehicle, with safety 
drivers/marshals to account for the prototypical status of the 
developed system, and in UULM’s V2X infrastructure pilot 
site, where the automated ego-vehicle will face objects and 
(artificial) error/degradation in one of the sensors/V2X. 
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EXP4 – HIT-FR/UK, CRF, 
TECN 
Decision making for motion 
planning when faced with 
roadworks, unmarked 
lanes and narrow roads 
with assistance from 
perception self-assessment 

 

EXP4 is an end-to-end experiment starting with the precise 
vehicle localization, by defining a semantic representation of 
the environment (T3.2), and the motion prediction of 
dynamic objects in the scene (T3.3). The localization of the 
ego-vehicle will be further enhanced by using V2X 
information (CAM, CPM and Signal Phase and Timing (SPAT) 
messages, if available), thus increasing the reliability of its 
position in case of a failure or sensor blockage (T3.4).  

EXP5 – HIT-FR/UK, CRF, 
TECN, WMG 
Decision making for motion 
planning when entering a 
jammed highway 

 

EXP5 is like EXP4 with two main differences. The first one is 
that there is a perception SA mechanism (T3.5). The second 
one is that the motion planning involves path and speed 
planning as well as control of the different highway entering 
experiments. 

EXP6 - APTIV 
Small object detection at a 
far range in adverse 
weather conditions 

 

EXP6 concerns the sensing of small objects and semantic 
representation of these objects (relative position, height, 
object velocity, overdriveability and estimation of time to 
collision) within diverse weather conditions. In these 
situations, the object might not be clearly visible to the 
human eye and a critical decision on the vehicle behaviors 
needs to be taken. The vehicle should either avoid a potential 
frontal collision if the object is non-driveable by braking or 
avoid a potential rear collision with other vehicles driving 
behind if the object is over-driveable due to unnecessary 
braking. 

EXP7 – ICCS, WMG 
Localization/perception 
self-assessment for 
advanced ACC and other 
vehicles’ behavior 
prediction under adverse 
weather or adverse road 
conditions 

 

This experiment focuses on the development of an integrity 
monitoring mechanism for 3D LiDAR-based object detection 
and distance estimation to the leading vehicle in urban and 
highway environments under overcast and adverse weather 
conditions. The mechanism should reliably indicate the point 
in time when the relative localization of the ego-vehicle with 
respect to the leading vehicle must not be trusted and/or the 
object detection becomes unreliable. Another objective (not 
related with the SA objective) is to study the effects of 
adverse weather conditions on a perception module 
performing other vehicles’ behavior prediction. 
 

EXP8 - PERCIV 
Emergency evasion 

maneuver under adverse 
weather conditions 

The low atmospheric visibility in adverse weather conditions 
like fog, snow, and rain reduces the maximum viewing 
distance of LiDAR sensors. This in turn decreases the object 
detection and localization performance and cause safety 
hazards. Weather conditions have effect on sensing and 
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including perception self-
assessment 

 

therefore on perception and localization of automated 
driving system. This use case provides the possibility to 
evaluate the on-board visibility-based localization 
performance estimate. Safe vehicle control is necessary in 
case the weather conditions worsen and fail-safe behavior in 
case of exiting the ODD completely due to extreme weather. 

 
 

2. Training data acquisition and adaptation  
This section reports on the progress made by the EVENTS partners on activities 

pertaining to Task 3.1. The report is organized along the directions set in D3.1  [25], 

specifically: 

i. Data generation and augmentation (ICCS, HIT). 

ii. Exploration and utilization of (experiment-specific) public datasets (TECN for 

EXP2). 

iii. Acquisition of a new road debris dataset within EVENTS (APTIV). 

iv. Self-Supervised Learning (TUD). 

Each of the following sections focuses on progress on the above topics, as conducted 

by the respective involved partners. With this report, the work of Task 3.1 has been 

successfully concluded. This work has partially fed the work in T5.1 (scenario editing 

for simulation and data logging, see D5.1 [157]) and T6.2 (data preparation for 

evaluation) respectively. 

 

2.1 Data Generation and Augmentation 

2.1.1 Adverse weather image translation 

Generating synthetic driving-related images with adverse weather conditions at scale 

by means of deep generative models is challenging, as already described in D3.1 [25]. 

Apart from the training instability characterizing GANs in general, retraining image-to-

image translation models for specific translations (rain, snow, fog) has intense 

computational requirements, even for producing images at low resolutions (256x256, 

256x512) [1], [2], [3], [4]. ICCS has further experimented with off-the-shelf models, 

namely pix2pix and Stable Diffusion. The translated images were frequently of 

acceptable visual quality (Figure 1), but still required manual inspection for reassuring 

usability (Figure 2). Furthermore, the annotations of the original image were not 

guaranteed to hold for the translated one, a problem most often observed in the 

Stable Diffusion model (Figure 3, Figure 4). Overall, the explored approaches based on 

GANs do not appear to alleviate significantly the manual effort required to produce 

large scale quality datasets. 
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Figure 1: Original image (left), synthesized via pix2pix (right). 

 

    

Figure 2: Original image (left), synthesized via pix2pix (right). 

    
Figure 3: Original image (left), synthesized via pix2pix (right). 

    
Figure 4: Original image (left), synthesized via Stable Diffusion (right) . 

Therefore, a further study of the effects of artificial data augmentation was conducted 

along the following two axes: 

a) A study on the effects of augmenting the CityScapes dataset (by reproducing [4]) on 

the small, medium, and large versions of the state-of-the-art YOLOv8 object detector. 

The test set was a custom dataset of 10.000 images selected from the Canadian 

Adverse Driving Conditions Dataset. The detectors were retrained on the following 

data: (i) the original CityScapes (ii) both the original CityScapes and all of its weather-

translated versions (iii) same as in (ii) without the original dataset, and evaluated by 

the mAP 50-95 metric. Results are depicted in the table below. Overall, augmenting 

the dataset was beneficial only for the larger models, but even for them not 

significantly.  

Model/ Training 
set 

CityScapes CityScapes +  
Translations 

Translations 

Yolov8 Small 0.40 0.40 0.39 
Yolov8 Medium 0.44 0.46 0.45 
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Yolov8 Large 0.46 0.49 0.49 

 

b) A study on the effect of augmenting a part of nuscenes [7] by random global and 

local blurrings and perspective transformations to emulate corrupted visibility on the 

same object detector as in (a). No significant improvements were observed for 

detectors of all sizes (a max of ~0.05 in every experiment). 

Based on the above observations and results, ICCS shifted the main effort towards 

simulated data generation. 

2.1.2 Data generation via simulation 

Two distinct software frameworks (besides pytrees) were explored for scenario 

generation and variation in CARLA by ICCS, namely (i) Roadrunner1 and (ii) Scenic2. 

Additional effort was put for the integration of RGB and Lidar sensors on the involved 

actors. 

Pytrees is a Python library consisting the standard set of tools for scenario generation 

and editing in the CARLA simulator. Although it is readily compatible with the 

simulator, it requires coding skills and both the creation and variation of scenario are 

quite time consuming. Furthermore, the scenarios produced by pytrees can be used 

only by CARLA, strictly excluding general applicability.  

An alternative and most commonly used approach is based on the ASAM 

OpenScenario XML standard for scenario specification [8]. OpenScenario formalizes 

the scenario description language via XML semantics in a universal format consumable 

by driving simulators. It is fully interoperable with the ASAM OpenDrive standard for 

specifying constant map elements (Figure 5) [9]. The Roadrunner software supports 

both standards and facilitates scenario generation and variation via a user-friendly 

graphical user interface and its gRPC API. The entire stack was tested on specifying 

and varying two distinct scenarios, namely a motorway cut-in scenario and platooning 

in a roundabout. In both scenarios, initial specification and slight variations were easily 

implemented. In both cases, some additional scripting transforming the produced files 

to a CARLA Scenario Runner consumable format was needed, an effort expected to be 

minimized in future versions of the software. Imposing slight variations on both 

scenarios was perfectly feasible by simple scripting. Therefore, exploiting Roadrunner 

and the CARLA ground truth appears as a valuable toolchain for multiple view 

simulated data generation (Figure 6). However, OpenScenario limits the specification 

of vehicle trajectories in defining simple path following actions (Figure 7) without the 

option of specifying additional control flow on top of them. This limitation appeared 

 
1 https://www.mathworks.com/products/roadrunner.html (free for academic use) 
2 https://docs.scenic-lang.org/en/3.x/publications.html 

https://www.mathworks.com/products/roadrunner.html
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quite restrictive while varying platooning scenario, pointing to a rather limited 

usability for varying more complex scenarios in general. 

    
Figure 5: Map Construction (left) and final form (right) - snapshot from RoadRunner map 
creation 

Scenic is domain-specific scripting programming language for modeling scenarios 

involving agent (e.g. robots or vehicles) movement and interactions [10]. It is 

intrinsically integrated with a variety of simulators including CARLA, thus the resulting 

coded scenario can be readily executed in any compatible simulator without the need 

of additional integration effort (Figure 8). Scenario parameters are specified in ranges; 

starting a simulation will randomly pick parameters within the specified ranges, thus 

a large number of variations can be simulated in a straightforward manner. Apart from 

that, Scenic allows the definition of actor behavior via built-in or custom specified 

conditional control flows, a feature the OpenScenario stack is still lacking. Therefore, 

Scenic enables the specification and simulation of a large variety of actor interactions, 

including behaviors reacting dynamically to the current environment. 

    
Figure 6: Multiple view simulation of a custom scenario in different maps (snapshots from 
CARLA build) 
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Figure 7: Definition of vehicle trajectory via space-time waypoints (snapshot from 
RoadRunner scenario creation). 

Apart from exploring the aforementioned features, modifications of the Scenic source 

code were carried out in order to: 

(i) spawn multiple sensors on the participating agents, 
(ii) log the agents’ ground truth data including locations, velocities and 

bounding boxes and sensor recordings during simulation runtime, 
(iii) project 3D bounding boxes to any camera frame (via the appropriate 

coordinate transforms) and display during runtime (for an example 

visualization, see Figure 9) 
(iv)  

 
Figure 8: Pedestrian crossing behind obstacle, oncoming car from opposite lane (snapshot 
from Scenic-CARLA co-simulation environment). 

    
Figure 9: Oncoming car ground truth bounding box display during runtime (snapshot from 
Scenic-CARLA co-simulation environment) 
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2.1.3 Annotated traffic sign dataset generation via patch 

augmentation 

A challenge that arises in traffic sign recognition is the ability to recognize non-

standard or country-specific signs. Examples of non-standard traffic signs include signs 

with specific semantic meaning (e.g., road works) and country-specific signs in Japan 

(e.g. the road work sign in Japan). 

The public datasets related to traffic signs explored by HIT (refer to D3.1 [25]), can be 

grouped as follows: 1) datasets that are generated by the public (and labelled by 

human annotators), e.g., the Mapillary dataset [11], and 2) an AV specific dataset that 

was generated primarily for European roads, i.e., Zenseact dataset [12]. While both 

datasets are valuable for training a sign detector, the aforementioned issues remain, 

i.e., the lack of generalization to non-standard and country-specific signs. To this end, 

we propose to patch augment a template sign onto an existing public dataset to 

generate a labelled dataset that can be used to train an object detector. Prior works 

in this area have shown such approaches are effective in boosting performance of 

baselines models by patch augmenting classes onto images [13], [14].  

Our proposed method is relatively simple and patches an object (to be detected) onto 

an image without considering if the object placement in the scene is realistic. To 

capture the camera viewpoint perspective distortion and scaling effects, we propose 

to use projective geometry and image scaling respectively. Finally, to capture 

variations in intensity, we use conventional intensity augmentations such as affine 

transformations of pixels. 

To summarize, our proposed method consists of the following steps: 

• Identify a public dataset with significant scene variation. Collect a database of 

traffic signs, which can be sourced from the internet. 

• Randomly select a traffic sign for patching onto an image from the public 

dataset. 

• Randomly resize the selected traffic sign and apply data augmentation 

techniques (pixel geometry transformations and pixel intensity 

transformations). 

• Identify a random patch location within a selected image from the public 

dataset and patch onto it the transformed traffic sign. 

An example patch augmented image using the proposed approach is shown in Figure 

10. 
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Figure 10: Patch augmentation on public dataset not considering both traffic sign 
configuration and camera viewpoint. 

2.2 Exploration and use of public datasets for cooperative motion 

prediction 

TECN develops a cooperative motion prediction module to be used within the 

framework of EXP2. To this end, a variety of publicly available datasets has been 

explored, including datasets most commonly used in the literature for this purpose 

like nuScenes [15], Waymo [16], and Argoverse 1 [17]. Despite their popularity, these 

datasets do not consider information from associated perceptual providers. To 

address this challenge, several additional datasets have been explored that capture 

perceptual systems from different perspectives. These datasets are depicted in the 

table below. 

Table 2: Comparison between Cooperative Perception-related Datasets. 

Dataset Real/Sim V2X 
Size 
(km) 

LiDAR 
pcds 

Map 
3D 

Boxes 
Classes Locations 

OPV2V [18] Sim V2V - 11k Yes 230k 1 CARLA 
V2X-Sim [19] Sim V2V&I - 10k Yes 26.6k 1 CARLA 
V2XSet [20] Sim V2V&I - 11k Yes 230k 1 CARLA 

A9 Intersection 
[21] 

Real V2I - 4.8k No 57.4k 10 
Hanover, 

Ger 
DAIR-V2X [22] Real V2I 20 39k No 464k 10 Beijing, CN 
V2X-Seq [23] Real V2V&I - 210k (seq) No 20k (2D) 8 Beijing, CN 

V2V4Real [24] Real V2V 410 20k Yes* 240k 5 Ohio, USA 

 

Datasets [18][19][20] are simulated, and hence are rather simplistic in terms of vehicle 

physics and sensor models. The A9 dataset [21] collected 4.8k frames from two 

cameras and two LiDARs placed on infrastructure. However, it does not provide 

information from connected vehicles. DAIR-V2X [22] was the first large-scale vehicle-

infrastructure cooperative autonomous driving dataset. It collects data from the 

infrastructure (10k frames) and a vehicle (22k frames). Incidentally, the data must be 

approved to be downloaded outside of China. Recently, the V2X-Seq dataset [23] was 

released. It is the first large-scale sequential V2X dataset. The temporal information 
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makes it perfect for motion prediction. However, like DAIR-V2X, its access outside 

China is restricted. 

For these reasons, the dataset primarily used for the evaluation of TECN’s  cooperative 

motion prediction module was V2V4Real [24]. V2V4Real consists of data from two 

vehicles recorded in real environment. It does not provide sequence information, but 

the dataset is prepared for tracking purposes, so it was further (pre) processed to 

extract sequence information.  

2.3 Acquisition of a new road debris dataset 

A new road debris dataset was collected in order to obtain the required training and 

test data for the perception algorithm used in EXP6. A literature review on debris-

related accidents was conducted in [25] providing valuable insights on the selection of 

objects to be included in this new dataset.  

Data used for selecting and training a method for object classification was collected in 

a controlled and repeatable manner. The data was obtained from a front-facing radar, 

mounted on the host vehicle. Objects are placed ahead of the host vehicle at distances 

depending on the test speed, approximately 500 m for a speed of 130 kph and around 

350 m for lower speeds. During data collection, the host vehicle approaches the object 

in a straight line accelerating to reach the target speed. Once the desired speed was 

reached, the vehicle began decelerating, coming to a complete stop, directly in front 

of the debris. 

The data was collected using different speeds: 50, 90 and 130 kph with the data 

recording starting at 300 m (refer to Figure 11). 

The object orientation was also varied during data collection for those objects that 

had a major and minor axis. Depending on their shape, objects were placed facing the 

host vehicle (0° orientation) or at 45° and 90° rotation angle (refer to Figure 12). 

Objects were placed either directly in the middle of a path of the host vehicle or with 

a lateral offset of 1.5 m (refer to Figure 13). 

Data was collected for 47 different objects. Due to time constraints on the test track, 

rotated and lateral offsets were only varied when the host vehicle speed was 50 kph. 
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Figure 11: Measurement: object on the path. Varied velocity. 

 

Figure 12: Measurement: Object on the path. Rotated. 

 

Figure 13: Measurement: Object with lateral offset to the path. 

2.4 Self-Supervised Learning 

In this section, the contributor from the EVENTS’ partners is TU Delft. 

Object detection is one of the core tasks of computer vision, and it is integrated into 

the pipeline of many applications such as autonomous driving [26], person re-

identification [27], and robotic manipulation [28]. During the past decade, the 

computer vision community has made tremendous progress detecting objects, 

especially learning-based methods. These supervised methods rely on manual 

annotations, i.e., each object instance is indicated by a bounding box and a class label. 

However, a massive amount of labeled training data is usually required for training 

those models, while labeling is expensive and laborious. This raises the question of 

how object detection models can be trained without direct supervision from manual 

labels. 

Unsupervised object detection is a relatively unexplored research field compared to 

its supervised counterpart. For camera images, recent work [29], [30] shows that the 

emergent behavior of models trained with self-supervised representation learning can 
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be used for object discovery, i.e. object localization without determining a class label. 

The behavior implies that the learned features of those models contain information 

about the semantic segmentation of an image, and thus, they can be used to 

distinguish foreground from background. Consequently, the extracted coarse object 

masks are used to train 2D object detectors [31], [32]. Although these methods 

perform well for images depicting a few instances with a clear background, they fail 

to achieve high performance for images with many instances, such as autonomous 

driving scenes [33]. In these scenes, instances are close to each other and, as a result, 

are not directly separable using off-the-shelf features. 

On the other hand, spatial clustering is the main force that drives 3D object discovery 

[33], [34]. In contrast to images, separating objects spatially is relatively easy in 3D 

space, but differentiating between clusters based on shape is challenging because of 

the density of the data (e.g. sparse LiDAR point clouds). Hence, temporal information 

is often exploited to identify dynamic points that most likely belong to mobile objects 

such as cars and pedestrians. In this context, we define mobile objects as objects that 

have the potential to move. Consequently, objects such as buildings and trees are 

considered non-mobile classes. The discovery of static foreground instances (e.g. 

parked cars and standing pedestrians) is usually achieved by performing self-training. 

Self-training is based on the assumption that a detector trained on dynamic objects 

has difficulty discriminating between the static and dynamic versions of the same 

object type. As a result, when such a detector is used for inference, it will also detect 

many static instances. The predicted objects are then used for retraining the detector, 

i.e. self-training, which is repeated multiple times until performance converges. 

We argue that multi-modal data should be used jointly for unsupervised 3D object 

discovery as each modality has its own strengths, e.g. cameras capture rich semantic 

information and LiDAR provides accurate spatial information. Existing work [33] does 

use multi-modal data for unsupervised object discovery but not jointly. The training 

procedure consists of two parts: (1) training with LiDAR-based pseudo-bounding 

belonging to dynamic instances and (2) multi-modal self-training to learn to detect 

static and dynamic objects. However, Wang et al. [33] ignore the fact that both 

modalities can be used at the same time for creating pseudo-bounding boxes. 

2.4.1 Method 

We propose our method, UNION [35], that exploits the strengths of camera and LiDAR 

jointly, see Figure 14. We extract object proposals by spatially clustering the non-

ground points from LiDAR and leverage camera to encode the visual appearance of 

each object proposal into an appearance embedding. Subsequently, we exploit the 

appearance similarity between static and dynamic foreground objects for 

discriminating between static foreground and background instances. Finally, the 

identified objects and their appearance embeddings are used to generate pseudo-
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bounding boxes and pseudo-class labels, which can be used to train existing 3D object 

detectors in an unsupervised manner using their original training protocol. 

 

Figure 14: UNION discovers mobile objects in an unsupervised manner by exploiting LiDAR, 
camera, and temporal information jointly. The key observation is that mobile objects can be 
distinguished from background objects by grouping object proposals with similar visual 
appearance and selecting appearance clusters that contain at least X % dynamic instances . 

2.4.2 Dataset 

We evaluate our method on the challenging nuScenes [36] dataset. This is a large-

scale autonomous driving dataset for 3D perception captured in diverse weather and 

lighting conditions across Boston and Singapore. It consists of 700, 150, and 150 

scenes for training, validation, and testing, respectively. A scene is a sequence of 20 

seconds, and is annotated with 2 Hz. Each frame contains one LiDAR point cloud and 

six multi-view camera images.  

2.4.3 Intermediate Representations UNION 

The first step for generating object proposals is to extract the non-ground points from 

all LiDAR point clouds as the non-ground points may belong to mobile objects. The 

non-ground points are spatially clustered to get object proposals, i.e., 3D segments. 

Step 1 in Figure 14 illustrates the generation of these class-agnostic 3D object 

proposals, and Figure 15 and Figure 16 show the ground segmentation and spatial 

clustering for a sample of the nuScenes [36] dataset, respectively. 
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Figure 15: A LiDAR point cloud segmented into ground (gray) and non-ground points (red). 

 

 

Figure 16: The spatial clusters of the non-ground points from Figure 2. The ground points are 
indicated by gray, while the spatial clusters (object proposals) have non-gray colors. 

We estimate the motion status of the object proposals to determine whether each 

proposal is static or dynamic. The object proposals contain temporal information as 

the non-ground points from multiple time steps have been aggregated before the 

spatial clustering. In other words, the motion can be observed when the 3D points of 

an object proposal are split into different sets based on their time step, i.e., undoing 

the aggregation. This is shown by step 2 in Figure 14, and Figure 17 shows the dynamic 

object proposals for a sample of the nuScenes [36] dataset. 
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Figure 17: Dynamic object proposals (red) and static object proposals (gray).  

2.4.4 Generated Pseudo-Bounding Boxes 

Figure 18 provides qualitative results of the generated pseudo-bounding boxes for an 

example scene of the nuScenes [36] dataset. The ground truth boxes are also shown. 

It can be seen that the scene flow can identify multiple dynamic objects, and the 

appearance clustering can discover static mobile objects, including vehicles and 

pedestrians, using those dynamic instances. 

 

Figure 18: Qualitative results for the UNION pipeline compared to the ground truth 
annotations. (a) HDBSCAN [37] (step 1 in Figure 14): object proposals (spatial clusters) in 
black. (b) Scene flow (step 2 in Figure 14): static and dynamic object proposals in black and 
red, respectively. (c) UNION: static and dynamic mobile objects in green and red, respectively. 
(d) Ground truth: mobile objects in blue. 

3. WP3 Modules in EVENTS Experiments 

3.1 EXP1 (TUD): Interaction with VRUs in complex urban 

environment 

EXP1 is about safe, comfortable and time-efficient automated driving in complex 

urban environment while interacting with VRUs (e.g., pedestrians, cyclists). We use a 

modular LiDAR perception pipeline to detect and track objects, as well as predict their 

future motion. 
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3.1.1 Overview  

We fuse the point clouds from both LiDARs to generate a high-resolution ego-motion 

compensated point cloud that covers the 360 surroundings of the vehicle. To detect 

objects from a set of predefined classes, as well as generic objects, we use two 

detection components. A deep learning-based detector detects objects from a set of 

predefined classes, e.g., car, bike, and pedestrian. We also use a traditional LiDAR 

clustering pipeline to segment generic objects that are not part of the above set of 

classes. An object merger combines the detections of both methods and discards 

near-identical duplicate detections. A multi-object tracker tracks detected objects 

across time, and a motion prediction component predicts the future path of each 

tracked object. 

    

(a)                                                                      (b) 

Figure 19: A visualization of the outputs of the object detector and LiDAR clustering. (a) The 
object detector detects a predefined set of object classes (e.g. car and pedestrian), cf blue 
bounding boxes. (b) The LiDAR clustering segments any object protruding from the ground 
plane, including generic objects, cf. white bounding boxes. 

3.1.2 Object Detection  

We use the deep learning-based CenterPoint [38] detector for LiDAR-based 3D object 

detection, since it is accurate and can run in real-time. Autoware [45] provides the 

model parameters for CenterPoint trained on the nuScenes [36] dataset for 

autonomous driving. However, the LiDAR used in nuScenes is significantly sparser than 

our LiDAR, which results in a drop of the detection rate. Therefore, we retrain 

CenterPoint on the recently published Zenseact [39] dataset to improve the detection 

performance. This dataset was captured using a LiDAR with a similar density as our 

LiDAR, and as a result, the smaller domain shift between the source dataset and our 

demo environment results in a higher detection performance than achieved with 

CenterPoint trained on nuScenes. Figure 19a shows the detected objects for a scene. 

Within the quantitative evaluation in WP6, we aim train the CenterPoint detector on 

a larger dataset obtained by our self-supervised framework described in Section 3.2.4.  

LiDAR clustering. Given a LiDAR point cloud, we remove the ground plane [40] and 

group the remaining points into several class-agnostic clusters [41]. Then, we fit an L-
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shaped bounding box for each cluster using [42]. We tune the clustering 

hyperparameters on a small set of self-collected data near the campus by examining 

the result qualitatively. Figure 19b shows the clustering results for a scene.  

Object Merging. The object detector and LiDAR clustering step can output duplicate 

detections for the same physical object. Merging these detections can be regarded as 

a minimum-cost flow problem (MCFP). We solve the MCFP using the successive 

shortest path (SSP) algorithm [43]. Matched objects are assigned labels derived from 

the CenterPoint detection pipeline. Detections that do not have a corresponding 

match are labeled as “unknown objects”. 

3.1.3 Multi-Object Tracking.  

We apply a multi-object tracker on the merged objects to smooth tracks, infer the 

track identities, and estimate the velocity of each object. The multi-object tracker 

consists of a data association module and an Extended Kalman Filter (EKF) tracker. The 

data association module performs maximum score matching to associate the objects 

from neighboring frames. Our implementation uses muSSP [44] as the solver to 

achieve real-time performance. 

We build a separate EKF tracker for each learned object class, as well as the unknown 

object class. 

3.1.4 Motion Prediction 

We currently use the EKF proposed in the previous step and propagate the uncertainty 

4 seconds into the future. These unimodal distributions represent the future locations 

of all actors in the scene. The predicted distributions are fed into the motion planner  

(cf. WP4). 

Within WP5, we aim to integrate the more sophisticated map-based PGP motion-

prediction method discussed in [156], into the vehicle, which allows multi-modality in 

the prediction. 

3.2 EXP2 (ICCS, TECN): Re-establish platoon formation after split 

due to roundabout 

3.2.1 Introduction 

EXP2 is based on the following rationale; (i) Platoon re-establishment is a long standing 

focus in the CCAM research community. (ii) Methods for trajectory prediction of non-

ego vehicles have undergone important advances recently. (iii) The potential of V2X 

augmented (collective) perception remains quite unexplored across a variety of traffic 

scenes and respective occlusion scenarios. Thus, EXP2 aims to explore the combined 
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potential of trajectory prediction and V2X-augmented collective perception in the re-

establishment of a vehicle platoon within a roundabout setting. 

3.2.2 Cooperative Motion Prediction 

 

Motion prediction 

 
Figure 20: Cooperative Framework for Motion Prediction. 

TECN develops a cooperative motion prediction framework [57] that considers all 

perceived vehicles to compute the future trajectories of the surrounding agents. Its 

proposal is based on Hierarchical Vector Transformer (HiVT) [58], without a specified 

map for enhanced generality. The model was trained on the Argoverse 1 dataset [48]. 

The model’s input is a collection of vectorized entities representing the traffic scene. 

Agent interactions are encoded by a local encoder, which enables a rotation-invariant 

representation for each agent for scalability and better learning. A subsequent global 

module encodes the long-range dependencies between the agent-centric local 

representations. Finally, a multimodal future decoder predicts the trajectories of all 

agents in a single pass. The output is represented on a CAV local coordinate frame. 

Planned future work includes varying this frame by frame, to measure the impact of 

changing viewpoints on the predictions.  

 
Table 3: Performance of the motion prediction model in Argoverse 1. 

Model Map minADE (m) ↓ minFDE (m) ↓ MR (%) ↓ 
HiVT-64 [13] ✔ 0.69 1.04 0.1 

HiVT-128 [13] ✔ 0.66 0.96 0.09 
Crat-Pred [14] ✘ 0.85 1.44 0.17 

HiVT-64 (ours) ✘ 0.76 1.24 0.14 

 

Association methods 

Multiple overlapping detections of the same object by different CAVs should be 

combined to improve accuracy and reliability of the motion prediction framework. To 

this end, we have tested two available methods. The first method resolves overlapping 

detections by merging them to the detection obtained by the closest CAV, in terms of 

Euclidean distance. The second method counts the number of lidar points within each 

detected bounding box and selects the bounding box containing the maximum 
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number of LiDAR points, which implicitly considers occlusions and is therefore more 

accurate. A future version of the motion prediction network will also consider the 

detector confidence. 

Experimental setup and results 
The model was evaluated on the complete V2V4Real [55] dataset on a total of 20,000 

frames by means of Brier Scores for minADE and minFDE [48][58]. Initially, the model 

was evaluated without V2V enhanced perception. The next evaluation assumed V2V 

without or with Euclidean/bbox clustering associations. Subsequently, following [60], 

we changed the viewpoint for the motion prediction module. The performance 

evaluation results are depicted in Table 4. 

 

Table 4: Comparison of methods on the V2V4Real dataset normalised by the number of 
actors in the scene. We show the CAVs, the association method, the viewpoint and the 
performance metrics. The”-” denotes that there is no association method used. 

CAVs Fusion ViewPoint 
Num  

actors 

brier-minADE (m) brier-minFDE (m) 

Absolute Relative  Improvement Absolute Relative  Improvement 

Tesla - Tesla 7.74 1.80 0.23 - 2.88 0.37 - 

Astuff - Astuff 8.45 1.88 0.22 - 2.96 0.35 - 

Tesla & Astuff - Tesla 14.58 2.00 0.14 - 3.17 0.22 - 

Tesla & Astuff Euclidean Tesla 10.13 1.92 0.19 18% 3.02 0.30 20% 

Tesla & Astuff Bbox clustering Tesla 10.19 1.92 0.19 19% 3.03 0.30 20% 

Tesla & Astuff - Astuff 14.58 2.00 0.14 - 3.18 0.22 - 

Tesla & Astuff Euclidean Astuff 10.13 1.92 0.19 15% 3.04 0.30 14% 

Tesla & Astuff Bbox clustering Astuff 10.19 1.93 0.19 15% 3.05 0.30 15% 

 
Since an increased number of perceived actors is expected to raise the error, the 

“Relative” column depicts the ratio Absolute/number of actors. Apparently, the V2V 

enhanced perception improves performance. No significant differences were 

observed by altering the association methods and changing the model’s field of view. 

Indicative qualitative results are depicted in Figure 21, Figure 22, Figure 23, Figure 24, 

Figure 25, and Figure 26. 

We represent: the Tesla point cloud, the Astuff point cloud, the agents, the past 

observations, the ground-truth and our multi-modal prediction (with the highest 

confidence). We show, from left to right, single-vehicle, Euclidean and bbox clustering. 
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Figure 21: Single-vehicle 
Tesla. 

 
Figure 22: Euclidean 
association with the tesla as 
viewpoint. 

 
Figure 23: Bbox clust. 
association with the Tesla as 
viewpoint. 

   

 
Figure 24: Single-vehicle 
Astuff. 

 
Figure 25: Euclidean 
association with the Astuff 
as viewpoint. 

 
Figure 26: Bbox clust. 
association with the Astuff 
as viewpoint. 

   
 

3.2.3 Augmented Perception via V2X-CAM-CPM 

The formalization of CAM and CPM messages was based on the specifications 

provided in the respective ETSI documents [61], [62], [63], [64]. JSON file formats were 

specified accordingly, where each data field is defined in terms of data type (e.g., 

number, string etc.) and physical interpretation and units were applicable. The CAM 

JSON file includes all relevant data on the state of the ego-vehicle including position, 

heading, yaw rate, speed, acceleration and vehicle dimensions. The CPM provides 

details for each perceived object including object type, vertical and horizontal distance 

and speed coordinates (w.r.t. to the ego-vehicle), yaw angle and planar object 

dimensions. 

In the EXP2 setup, three CAVs perform platooning manoeuvres alongside simulated 

dummies within the CARLA simulator. The 3D detections from these scenarios are 

parsed into CAMs and CPMs, formatted using the ROS standard message type 

std_msgs/String. The information included in the CAM and CPM messages 

disseminated by each vehicle is used by ICCS to construct a collective estimation of 
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the bird’s eye view of the scene in terms of a probabilistic occupancy grid as already 

described in D3.1 [25]. 

Algorithm overview 

Collective perception of CAVs is a relatively recent research area, for which a variety 

of approaches have been proposed, ranging from methods motivated by mobile 

robotics to more sophisticated deep-learning based techniques [49], [50], [51], [65], 

[66], [67], [69]. The adopted approach focuses on: (1) Use of CAM/CPM; (2) End-to-

end explainability; (3) Algorithm parameters that correspond to observable physical 

quantities that can be measured and/or deduced; (4) Using evaluation 

measurements/metrics characterizing individual perception reliability of the actors 

involved and fusing them in a statistically transparent and probabilistically sound way; 

(5) Providing inherent and intuitive ways of (a) checking the consistency of received 

individual perception data, and (b) deriving metrics of output reliability.  The 

overarching architecture is depicted in Figure 27. 

 

 
Figure 27: Algorithm Overview. 

CAV Localization Filters 

We consider a non-linear, Ackermann-type model for spatiotemporal vehicle 

dynamics [68]: 
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�̇� = 𝑣𝑐𝑜𝑠𝜃 −  𝑣𝑡𝑎𝑛𝜑𝑠𝑖𝑛𝜃/2 
�̇� = 𝑣𝑠𝑖𝑛𝜃 –  𝑣𝑡𝑎𝑛𝜑𝑐𝑜𝑠𝜃/2 

�̇� =  (𝑣/𝑙)𝑡𝑎𝑛𝜑 

where 𝑥, 𝑦 are the cartesian coordinates of the center of the CAV axis, 𝜃 is the heading 

angle, 𝜑 is the Ackermann steering angle, 𝑙 denotes the distance between front and 

back wheel axes and 𝑣 denotes speed. The corresponding measurement model 

considers additive Gaussian noise for each one of the motion variables 𝑥, 𝑦, 𝜃 based 

on the respective device measurement error. Particle-based localization filters [69], 

[70] have been designed, achieving a 0.1 mean absolute estimation error for 𝜎𝑥 , 𝜎𝑦 =

0.33 𝑚 (corresponding to a 3𝜎 ≈ 1 𝑚 standard GPS error), 𝜎𝜃 =  5𝜊and 100 particles. 

 

CAV Field of View calculation and Bayesian fusion 

The Field of View (FoV) of each CAV is calculated according to its disseminated 

CPM/CAM. The FoV calculation method is based on a custom ray-casting approach 

that has been redesigned to consider both spatial dimensions and orientation of the 

involved vehicles (Figure 28). Additionally, significant effort was spent on GPU 

implementation. As described in D3.1 [25], the calculated FoVs combined with 

forward sensor model probabilities are subsequently used for Bayesian fusion and 

derivation of the resulting probabilistic occupancy grid. 

Online reliability assessment 

The described approach lends itself to straightforward and intuitive derivations of 

quantitative indicators for assessing the reliability of the output. Specifically: 

Starting from the CAVs localization step, a set of reliability indicators for the step’s 

output can be derived from the estimated covariances of the posterior state 

estimations of the filter recursions. These covariances characterize the uncertainty 

ellipse around each estimated CAV position. In case of Kalman filters, these are the 

resulting covariance matrices; in [71] the authors use these matrices for conducting 

pertinent statistical tests. In case of a particle filter, the resulting covariances can be 

directly calculated from the (resampled) output particle population. Thus, estimated 

covariances indicating uncertainty ellipses above a certain threshold size can be 

considered unreliable.  
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Figure 28: Scene BEV (left), CAV Field of View calculation (upper row images) and Fused 
Probabilistic Occupancy grid (right).  

The FoV of each particular CAV is calculated based on its estimated location plus the 

locations of its perceived objects/obstacles, essentially classifying grid cells into three 

classes: visible and empty, visible and occupied, and invisible (i.e. outside the FoV). 

This information provides a basis for performing plausibility checks and assessing the 

consistency of the disseminated individual perception data [72], [73], [74], [75]. We 

distinguish two categories of such checks. (a) Checks detecting self-contradicting 

information. This essentially means that the objects claimed to be perceived by the 

CAV should be within the reporting CAV’s FoV. Otherwise, one or both of the object’s  

and CAV’s location are considered untrustworthy. (b) Checks detecting contradicting 

information across all individual perception data disseminated by the CAVs. Several 

checks are possible; (b1) Cells claimed to be occupied by an agent that are within the 

FoV of other agents, should also be perceived as occupied by the other agents. (b2) 

 

Bayesian 

Fusion of 

CAM/CPM 

informatio

n 
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Cells perceived by an agent as occupied (or free) that are within the FoV of other 

agents, should be perceived as such also by the other agents. 

The output is a probabilistic occupancy grid, a notion dividing grid cells into those 

whose occupancy probability is adequately high/low and to those it is neither. By 

definition, cells of the second class indicate the locations of the grid for which the 

occupancy estimates are unreliable. This may be due to missing information (e.g. cells 

may be invisible by every agent) or conflicts between individual perception data of the 

involved agents as described in the previous section. We emphasize that in each case, 

either lack or conflict of available information will be reflected in the Bayesian fusion 

and its resulting posterior occupancy probabilities. 

Ultimately, there may be cells for which the output is reliable, and cells for which it is 

not. Hence, the overall approach does not address the issue of reliability of perception 

only as a (set of) general metric(s), but also accounts for its locality, a crucial feature 

in automated driving applications. Unreliable occupancy estimates may in fact be 

irrelevant when the associated grid cells are located far from the involved actors; a 

single unreliable estimate may be of utmost importance when it is close to one of 

them. The adopted approach captures this concept of locality in perception reliability 

in a fully transparent and explainable way. 

3.3 EXP3 (UULM): Self-assessment and reliability of perception data 

with complementary V2X data in complex urban environments 

EXP3 focuses on demonstrating safe automated driving in urban settings 

characterized by occlusions, relying on a combination of onboard SA methods and V2X 

data. The onboard perception system assesses its reliability, feeding that information 

into the further system to improve safety under challenging conditions, such as sensor 

failure. 

Deliverable D2.1 [82] outlines user and system requirements for relevant use cases  

and provides a detailed explanation of EXP3. Additionally, Deliverable D2.2 [83] 

provides a system architecture design, which is a subset of the project's overarching 

master architecture. 

This architecture, shown in Figure 29, illustrates how data flows internally between 

various modules, along with the corresponding inputs and outputs. For effective SA, a 

reliable foundation must be established, involving processes like data pre-processing, 

object detection, and object tracking.  
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Figure 29: Overall architecture of EXP3 modified from [83] 

In the scope of WP3 and this corresponding deliverable, the goal is to develop an SA 

framework for object-tracking algorithms such that the onboard perception system 

obtains SA scores. These scores are then used for the CPM and onboard track list 

fusion and the subsequent behavioural decision-making. First, an online performance 

assessment of multi-sensor Kalman filters is developed [88], and second, an SA 

framework for multi-object tracking is proposed [87]. These two approaches are based 

on the subjective logic theory [101], which enables a suitable framework for SA. The 

presented approaches continue the research of [90], [85], [91] toward safety and 

robustness in object tracking and, thus, autonomous driving. In addition to these 

works, more methods have been developed in the scope of WP3 and this project, 

namely [92], [94], [93], [95], [96], [97] . 

3.3.1 Online Performance Assessment of Multi-Sensor Kalman Filters 

Based on Subjective Logic 

Dynamic state estimation, particularly through the Kalman filter, is a key technique for 

filtering and tracking. Traditional methods like the normalized innovation squared 

(NIS) and normalized estimation error squared (NEES) [76] check specific criteria but 

provide limited insight into overall reliability. With increasing focus on reliability in the 

automotive industry, especially under ISO 21448 (SOTIF) [100], there is a need for a 

holistic SA framework. 

This work introduces a novel online SA framework for linear and nonlinear Kalman 

filtering, leveraging subjective logic. Moreover, it extends the previous SA methods  

[90], [85] to nonlinear filtering and proposes a multi-sensor assessment framework 

that allows real-time performance evaluation without requiring ground truth data. 

The approach enhances reliability in multi-sensor systems, addressing the gaps in 
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current methods. This work has been presented and scientifically published at a 

conference in [88]. 

Framework 

A novel aspect of the proposed system is its multi-sensor overall assessment 

framework, which directly integrates the single-sensor SA modules. This integration 

facilitates the assessment of multi-sensor configurations by leveraging the capabilities 

developed for individual sensors, providing a scalable and flexible solution for multi -

sensor systems. The proposed framework is conceptually visualized in Figure 30. 

Furthermore, the framework enables the derivation of closed-form solutions through 

the use of subjective logic. An additional key feature of the framework is its real-time 

capability. It is designed to continuously monitor and evaluate both the individual 

performance of each sensor and the overall performance of the filtering process. This 

real-time evaluation is crucial for applications that demand high levels of accuracy and 

reliability, such as autonomous driving and other safety-critical systems. 

 

Figure 30: The SA framework for linear and nonlinear multi-sensor Kalman filtering from [88]. 

Simulation Results 

In the simulation results shown in Figure 31, the three multi-sensor Kalman filter 

assessment approaches (multi-source fusion, trust revision, and projected probability 

concepts from subjective logic) are tested with five sensors tracking a single object. 

Sensor noise is disturbed at different times, with all sensors affected between time 

steps 300-600, then only four between 900-1200, and gradually fewer until only one 

is disturbed by step 3000. The subjective logic-based approach with trust revision 

performs similarly to the time-averaged NEES but does not report warnings when only 

one sensor is disturbed. The proposed method provides a reliability score between 0 

and 1, detecting disturbances without ground truth data, unlike NEES. 



 D.3.2: Perception System and Self-Assessment  

©EVENTS Consortium 2022-2025                                                                                                           Page 41 of 82 

 

 

Figure 31: Simulation results of the proposed multi-sensor Kalman filter SA in a nonlinear 
scenario with five sensors from [88]. Measurement noise is disturbed for all sensors, then 
gradually reduced to one sensor (red areas). The subjective logic-based approaches (multi-
source fusion, trust revision, and projected probability) are compared to time-averaged NEES 
using 200 Monte Carlo runs. 

3.3.2 Self-Assessment for Multi-Object Tracking Based on Subjective 

Logic 

As automated driving systems grow more complex, safety and robustness become 

critical challenges. To meet the ISO 21448 SOTIF standard, automated systems require 

SA modules, such as for multi-object tracking (MOT). Current methods, like the NIS, 

focus on single criteria, lacking a holistic SA approach for MOT. 

This work introduces a comprehensive SA framework for MOT, ensuring tracking 

assumptions are monitored and validated. It presents a specific implementation using 

the global nearest neighbor (GNN) algorithm and subjective logic. The SA module is 

tested on real-world data from the KITTI dataset [84], demonstrating its practical use 

and contribution to safety and robustness in automated driving. The concept is 

visualized in Figure 32. This work has been presented and scientifically published at a 

conference in [87]. 
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Figure 32: The proposed comprehensive SA module for multi-sensor multi-object tracking 
from [87]. 

Framework 

This framework presents a comprehensive SA module for multi-sensor MOT, designed 

to calculate SA scores for each sensor and track. The implemented SA module includes 

two key components: the SA Sensor, which evaluates specific assumptions for 

individual sensors, and the SA Post, which assesses the algorithm's overall assumption 

fulfillment for each track. This is visualized in Figure 33. 

 

Figure 33: The conceptual overview of the SA module for multi-object tracking from [87].  The 
SA module, consisting of the SA sensor part and the SA post part, monitors tracking 
assumptions about clutter, the data association situation, pre-fit and post-fit residuals, the 
noise assumption within the gate, and the detection probability.  

Experimental Results 

The proposed SA module is applied to real-world scenarios using the KITTI 3D tracking 

dataset [84], focusing on the GNN tracking algorithm with lidar data. It is then 

evaluated on KITTI training sequences 4 and 10. The evaluation focuses on three 

specific aspects described below. 
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1. Association Situation: In sequence 4, many parked cars create ambiguous 

associations, which are reflected in a lower SA measure. Sequence 10, 

however, is a clear scenario that shows consistently high SA scores. The results 

are visualized in Figure 34. 

 

Figure 34: Association situation of sequences 4 and 10 of the KITTI dataset from [87] 

2. SA Module: For sequence 10 in Figure 35, the subjective logic-based SA 

measures confirm that tracking assumptions are met, with a leading track 

detected in every time step. The MNIS noted some increases and violations 

across all tracks, but clutter SA measures also indicated that assumptions are 

satisfied. 

 

Figure 35: SA measures from the SA Sensor module for KITTI sequence 10 from [87], showing 
clutter and detection opinions compared to the multi-target NIS (MNIS). The detection SA 
measure focuses on the leading vehicle track initiated at time step 18, while the MNIS includes 
all tracks. 

3. False-Positive Tracks: Sequence 10 also revealed false-positive tracks initiated 

by consecutive clutter measurements in Figure 36. The SA module effectively 

distinguished these from true object tracks, as evidenced by high detection 

uncertainty prior to deletion, which could enhance the reliability of track 

maintenance algorithms. 
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Figure 36: SA measures of a false-positive track in sequence 10 of the KITTI dataset from [87]. 
SA module successfully identifies the false-positive track prior to the deletion algorithm's 
response. 

3.4 EXP4 (HIT, TECN): Decision making for motion planning when 

faced with roadworks, unmarked lanes and narrow roads with 

assistance from perception self-assessment 

3.4.1 Introduction 

The objective in EXP4 is to perceive and control a vehicle in the context of a 

unstructured road use case (specifically road works). The experiment first revolves 

around perceiving the environment to update the high-definition map. This 

information is then used by the motion planning module to follow a safe trajectory.  

 

Figure 37: The ODD being considered in experiment 4. Given a two lane road, a single lane is 
blocked by traffic bollards. The lane structure is thus modified according to the position of 
the bollards. 

3.4.2  HD-Map Update Using Detected Bollards 

The proposed system seeks to update the HD-map in real-time based on the detected 

road work bollards in the scene. By updating the HD-map in real-time, we propose to 

enable more efficient motion planning that can constrain more effectively the 

candidate trajectories. HD-map generation is an active area of both research and 

commercial deployment. Examples of such systems exist in both real-world 

deployments [114] to research work that utilize multiple sensory sources and machine 

learning to generate an HD-map [115], [116]. While such works focus on HD-map 

generation, other works have considered updating HD-maps according to changes 

observed between the reference map and the scene as observed by the vehicle's 

sensors (our work falls into this category). A summary of existing methods can be 
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found in [117] with no specific roadworks use being mentioned (to the best of our 

knowledge).    

To this end, we propose specifically to update the HD-map according to the observed 

roadworks bollards (using data obtained only from camera and GPS). Our approach 

will assume a specific ODD, namely, a 2 lanes road with one lane being blocked by 

road works. Our workflow is shown in Error! Reference source not found. and is c

omposed of the following steps: 1) 2D detection of road work bollards, 2) 2D->3D 

estimation of the road work bollards, 3) generation of plausible lane boundaries and 

4) update of HD-map based on the plausible lane boundary. 

 

 

Figure 38: Workflow for detection of bollards to update HD-map 

In the following subsections, we provide a description of the methods we have 

implemented. 

3.4.3 2D Object Detection of Bollards 

Our 2D object detector has been trained using both the proposed patch augmented 

data for traffic signs and bollards along with a subset of the Zenseact dataset that only 

includes road work bollards. We re-trained YOLOv5 to detect the following classes: 1) 

20 speed limit, 30 speed limit, 50 speed limit, 70 speed limit, Road work, and bollards 

(we have limited the example of bollards to the one shown in Figure 39, however, 

cones are all used but we do not currently consider those for the EVENTS project). An 

example of our model detecting bollards on data that we have collected is shown in 

Figure 39.  
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Figure 39: Trained 2D object detector. The bounding boxes (in purple), shows our model 
correctly predicting the location of the road work bollards in the image. This image was 
captured from a HIT vehicle. 

3.4.4 Estimation World Position  

Estimating the world coordinates (position) of the detected bollards Is determined 

using a computationally efficient geometric approach. We chose this approach as the 

following criteria were satisfied, 1) the road work bollard in question is planar and 

aligned vertically with respect to the ground plane, 2) LiDAR synchronization with 

camera is difficult to achieve, and 3) monocular depth estimation methods based on 

deep learning are computationally expensive and use limited GPU memory.  

Our geometric based approach is based on photogrammetry, where a distance in the 

real world can be associated to a distance within the image. 

3.4.5 Generate Plausible Lane Boundary 

After estimating the world position for a set of bollards, we proceed to link them in a 

structured manner to form a lane boundary. This can be formally described by treating 

the bollard positions as nodes in a graph and aiming to predict the corresponding 

edges that connect these nodes. In our current work, we construct a minimum 

spanning tree to link the nodes (bollards) in the graph.    
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Figure 40: An example of the generated lane boundary (shown in right panel green line), after 
detecting the bollards (left panel red bounding boxes). The generated lane boundary is overlaid 
onto LiDAR data. 

3.4.6 Update HD-Map  

After obtaining the plausible lane boundary, the final step involves updating the HD-

map. For this purpose, a rule-based process is used, which comprises the following 

steps: 

1) Check if plausible lane boundaries are enclosed by the current lane boundaries 

derived from the existing HD-map, as shown in step 1 in Figure 41Figure 42, 

where the plausible lane boundary is enclosed by the left and right drivable 

boundaries.  

2) If step 1 is true, determine if the plausible lane will form the “left” or “right” 

drivable road boundary of the ego vehicle’s updated HD-map. This is shown in 

step 2 of Figure 41 by assessing the plausible lane boundary nodes with respect 

to the ego-vehicle. This processing step can be quite challenging for complex 

road configurations.  

3) We finally update the HD-map by inserting the “new” boundary of the drivable 

road. This is shown in step 3 of Figure 41, where the drivable road boundary is 

updated based on the class of the plausible lane boundary determined in step 

2. 
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Figure 41: An illustration of the proposed approach for updating the HD-map based on the 
steps outlined in Section Error! Reference source not found.. The red line corresponds to the “
left” drivable road boundary, while the blue line corresponds to the right drivable road 
boundary. The green line is the plausible lane boundary estimated using the method 
described in Section Error! Reference source not found.. The light blue lines are the lane c
enterlines. The gray triangle represents the ego vehicle. 

Finally, the screen shot depicted in Figure 42 shows the full pipeline with data 

collected from HIT vehicle in a scenario that matches our ODD.  

 

Figure 42: Final system shows the updated the HD-map. Example is shown in the map frame 
(against the original map frame HD-map shown by the green lines). The red lines on the right 
panel are the left boundary of the drivable road, and the blue line is the right boundary of the 
drivable road. The light blue lines are the centerlines of the lane/s.   
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3.5 EXP5 (HIT, TECN, WMG): Predictive perception when merging 

onto a highway 

3.5.1 Introduction  

 

Figure 43: Experiment 5 scenarios. 

In this experiment, HIT, TECN and WMG cooperated to tackle scenarios where the 

ego-vehicle attempts to merge onto a highway or is in a highway lane observing other 

vehicles merging onto the main road, as shown in Figure 43. To address these 

situations, the target system needs to quickly detect and track multiple moving objects 

at varying speeds and predict their future movements without relying on maps. To this 

end, we developed and contributed a predictive perception system capable of 

robustly detecting and tracking multiple 3D objects moving at both low and high 

speeds in real-time (HIT’s contribution) and predicting their future movements based 

on past trajectories (TECN’s contribution). In addition, WMG contributes to the 

perception SA of the system. This enables the ego-vehicle to quickly access reliable 

information for safe decision-making at intersections. These modules were developed 

and tested using data collected by Hitachi’s demo vehicle. 
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Figure 44: Software architecture for EXP5 with corresponding partner contributions 

Figure 44 shows the software architecture for EXP5. HIT contributed to the end-to-

end system from sensors to tracked 3D object collection (Figure 44 left block) 

including: sensors installation, sensors processing and calibration, LiDAR based 3D 

object detection, multiple 3D object tracking module. TECN contributed to the multi 

3D object motion prediction module (Figure 44 right block). In this experiment, WMG 

contributed a perception monitoring mechanism that uses consistency checking 

between LiDAR and camera (Figure 44 top block). 

3.5.2 Multiple 3D object detection and tracking  

3D object detection focuses on estimating three-dimensional rotated bounding boxes 

using images or LiDAR data. It is an indispensable component of 3D multi-object 

tracking because the accuracy of these bounding boxes significantly impacts tracking 

performance. Compared to camera-based methods, LiDAR-based 3D object detection 

methods [119], [120], [121] deliver impressive results due to the precise 3D structural 

information provided by point clouds obtained from LiDAR sensors.  

3D MOT involves detecting and continuously tracking multiple objects across frames 

in a video, maintaining their identities even as they move or change appearance and 

based on that the velocity of interested objects can be attained as well. LiDAR-based 

detectors are widely favored for 3D MOT [122], [123], [124] due to their simplicity and 

high effectiveness. 

Due to the above reasons, as well as the experiment required a fast frame-rate 3D 

MOT output, HIT has contributed on developing a robust and real-time perception 

system that include a LiDAR-based 3D object detection and MOT algorithms to address 

the challenges. 
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As depicted in Figure 44, in the 3D object detection module, we developed a point 

cloud clustering algorithm to segment points into different clusters after 

concatenating and filtering points from two LiDARs. Those clusters are further 

processed by L-shape fitting algorithm to extract the 3D bounding boxes. Using this 

method, we were able to achieve 3D bounding boxes at a frame rate of 15 frames per 

second on the data collected by HIT’s demo vehicle. An example processing output of 

the algorithm on Hitachi collected data is showed in Figure 45. 

 

Figure 45: Example outputs from 3D object detection algorithm at an intersection of speed 
limit 70Km/h. 

As shown in Figure 44, the output of the 3D object detection algorithm is fed into the 

3D MOT algorithm. As explained in D3.1 [25], we developed a Kalman filter and a data 

association algorithm to track multiple 3D objects. We further improved the output of 

tracked object by providing the motion compensation from ego-vehicle’s state as well 

as a data association that can associate object in different frames when it moves fast. 

As a result, our 3D MOT algorithm can track multiple objects with a high range of 

relative speed with respect to the ego-vehicle from 0 km/h to 150 km/h. The 3D MOT 

algorithm processes the data collected by Hitachi’s demo vehicle at a rate of 15 frames 

per second. An example of the tracking output at a high-speed road intersection can 

be seen in Figure 46. 

 

Figure 46: Example tracking output on Hitachi's collected data. Left: Frontal camera 
image, Right: Tracked 3D object (in green) with indicated velocity (red arrow). 

3.5.3 Motion prediction  
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Motion prediction plays a crucial role when merging onto a motorway. The vehicle 

must calculate the future trajectories of the other vehicles in order to merge safely 

and efficiently. 

For this reason, TECN has trained HiVT: Hierarchical Vector Transformer for Multi-

Agent Motion Prediction [118] without the map information, for scalability to other 

setups where the map is not available as it is in Experiment 5.  

The motion prediction module needs the history of the surrounding vehicles. They 

must therefore be accurately detected and tracked.  Hitachi provides this information, 

which is fed into the module. The objects are then transformed into the ego-vehicle 

reference to infer the relationships between the agents in the scene. These trackers 

are organized as a collection of vectorized entities. The model encodes their social 

interactions to compute their future trajectories. The model predicts six trajectories 

per agent, representing the next 3 seconds at 10 Hz, as described in Experiment 2. 

However, in this case the information is only for an equipped vehicle rather than a 

collaborative maneuver.  

3.5.4 Perception system self-assessment 

In complex driving scenarios such as merging areas, an accurate detection of objects 

can be challenging. To improve safety, an SA mechanism can be introduced to 

continuously monitor and verify the quality of the primary perception system and 

raise an alert when needed. This section presents the SA framework of EXP5 through 

monitoring inconsistencies between the primary perception system, i.e., a clustering-

based 3D object detector, and an introduced camera-based 2D object detector.  

 

Figure 47: SA framework using 2D and 3D object detection with an inconsistency check to 
predict errors from LiDAR and camera data. 
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As illustrated in Figure 47, the SA framework comprises three main components: A 3D 

object detection module that uses clustering, a SOTA DNN-based 2D object detection 

module and the Inconsistency Check as a SA mechanism. The DNN-based 2D Object 

Detector processes camera images to generate a list of 2D detected objects. 

Simultaneously, the clustering-based 3D Object Detection module works on LiDAR 

point cloud data to generate a list of 3D detected objects. These two results are 

aligned through LiDAR-Camera Calibration, ensuring that objects from the 2D and 3D 

domains are mapped correctly. The Inconsistency Check module then compares the 

outputs of the 2D and 3D object lists to identify any potential discrepancies. 

Specifically, an inconsistency is flagged when an object detected by the camera with a 

confidence score greater than e.g., 0.5, does not have a 2D bounding box that achieves 

an IOU higher than e.g., 0.4, with any of the 3D bounding boxes (after projecting them 

onto 2D) detected by LiDAR-based clustering. If an inconsistency is detected within 

the input frame, an alert should be raised. Apparently, there's a safety concern, if both 

perception mechanisms miss an object. In that case, more sophisticated SA 

mechanisms such as those developed for EXP7 can help. 

The inconsistency-based SA mechanism in EXP5 is further clarified using the example 

illustrations of Figure 48. For the input frames depicted in Figure 48a, 48b and 48d, 

either the IOU between the bounding boxes generated by camera and clustering 

method exceeds 0.4, or the camera has failed to detect some objects in the scene, 

likely due to occlusions. In contrast, for the input frame shown in Figure 48c, the 

clustering algorithm has missed the white car on the left-hand side, which may pose a 

safety risk due to its potential conflict trajectory with the ego-vehicle. The camera, 

however, has detected this car with a confidence score greater than 0.5. Therefore, 

the SA mechanism raises an alert in this case and thereby enhancing safety. 
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Figure 48: Example illustrations of the SA mechanism in EXP5. 

3.6 EXP6 (APTIV): Small object detection at a far range in adverse 

weather conditions 

3.6.1 Introduction 

The objective of EXP 6 is to develop a perception system able to detect small objects 

in difficult weather conditions. A radar was selected as the base of the perception 

system as vision systems can be impaired in low visibility conditions [125]. Radars can 

provide more accurate information on the position in longitudinal direction of the 

observed objects and they can also provide the range rate of reflected surface. The 

radar selected for the experiment provides an elevation angle of detected reflection. 

The detected object has to be classified as either overdriveable or non-driveable in 

order to determine the appropriate braking response. For safe and uninterrupted 

driving, the system should only slow down for overdriveable obstacles like 

speedbumps and small debris without coming to a complete stop. In contrast, objects 

that could potentially cause damage upon collision should be considered as non-

drivable and trigger a deceleration response brining the vehicle to complete stop 

before the obstacle. 

The detection of debris as part of Automated Driving Assistance Systems (ADAS) or 

autonomous driving systems can improve safety. According to [126], between 2011 

and 2014, an estimated 50,658 debris-related accidents occurred annually in the 



 D.3.2: Perception System and Self-Assessment  

©EVENTS Consortium 2022-2025                                                                                                           Page 55 of 82 

 

United States, resulting in an average of 9,805 injuries and 125 deaths each year. A 

more detailed analysis of accidents involving debris on the road can be found in Error! R

eference source not found.. 

For a description of the newly recorded road debris dataset, refer to Section 2.  

3.6.2 Overview of perception 

Radar data contains azimuth and elevation angles, range, range rate of reflection 

points in the Vehicle Coordinate System (VCS), and the radar cross section of the 

reflections. Each data point from a single radar scan will be referred to as a radar 

detection. Radar detections are clustered using the DBSCAN algorithm [127]. The 

resulting clusters of radar data are provided to an algorithm which creates polylines 

from stationary objects. A polyline is a connected sequence of line segments on a 2D 

plane, which is a representation of stationary environment (objects that are not 

expected to ever move); refer to ISO 23150:2023 [128] for a more detailed definition. 

Most of the objects detected by the front-facing radar during one cycle of 

measurement provided a singular point of reflection. Radar detections associated to 

a polyline are accumulated over time. The positions of historical detections are 

updated in the VCS based on the host vehicle’s speed and yaw angle. The perception 

stack for processing these detections is shown in Figure 49. 

 

 

Figure 49: Perception data pipeline. 

3.6.3 Classifier training 

Naive height discrimination between different classes of objects using the elevations 

of detections from a radar scan, would not produce any acceptable performance. To 

address this, a machine learning-based classifier has been designed.  More than 20 

features were selected through expert’s judgement as input to the classifier . These 

features were derived from raw detections properties. Features are calculated for a 

polyline based on aggregated data from radar detections associated to polyline.  

Ground truth classification labels are based on the height of an object – objects smaller 

than or equal to 12 cm are considered as overdriveable (refer to [25] for our reasoning 
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to use this threshold value). Manual labels, used as ground-truth, are associated to 

polylines created on the observed object.  

Radar detection data, features calculated using that data, and labels are used in the 

machine learning process to train an appropriate classifier. Examples of methods of 

classification via machine learning using radar data are discussed in [129], [130]. The 

data collection and algorithm training pipeline is shown in Figure 50. 

 

Figure 50: Process of data preparation for training overdriveability classifier. 

3.6.4 Data collection measurements overview 

Figure 51 shows some of the objects used to test the overdriveability classifier. The 

brick is considered as overdriveable and the rest are non-driveable. 

 

 
a 

  
b 

  
c 

  
d 

  
e 

 

Figure 51: Object under test – (a) brick; (b) axle stand; (c) box; (d) standing ladder; (e) metal 
bucket. 
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As expected, such small objects provide a single point of detection most of the time as seen 

in Figure 52. 

 
a 

 
b 

 
c 

 
d 

 
e 

 

Figure 52: Radar data from one scan. (a) brick; (b) axle stand; (c) box; (d) standing ladder; (e) 
metal bucket. The axes show the longitudinal and lateral distance to the host vehicle in 
metres. 

3.6.5 Classifier output results 

Radar data gathered on the test track was used to train an overdriveability classifier. 

Accumulated detections used for feature calculation are presented in Figure 53. 

 
a 

 
b 

 
c 

 
d 

 
e 

 

Figure 53: Accumulated radar data. (a) brick; (b) axle stand; (c) box; (d) standing ladder; (e) 
metal bucket. The axes show the longitudinal and lateral distance to the host vehicle in 
meters.  
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The output of the algorithm is a polyline with overdriveability classification. Polylines 

created on a small object will contain only two vertices and one segment. The 

classification results for the five objects shown in Figure 51 are presented in Figure 54. 

 
a 

 
b 

 
c 

 
d 

 
e 

 

Figure 54: Polyline with overdriveabilty classification: (a) brick; (b) axle stand; (c) box; (d) 
standing ladder; (e) metal bucket. The axes show the longitudinal and lateral distance to the 
host vehicle in metres. Red means non-driveable and green means overdriveable. 

3.7 EXP7 (ICCS, WMG): Localization/perception self-assessment for 

advanced ACC and other vehicles’ behavior prediction under 

adverse weather or adverse road 

EXP7 is titled as “Localization/perception SA for advanced Adaptive Cruise Control 

(ACC) and other vehicles’ behaviour prediction under adverse weather or adverse 

road conditions”. In WP3, the objective is to develop SA mechanisms for (i) LiDAR-

based 3D object detection, and (ii) LiDAR-based localisation with respect to the leading 

vehicle for ACC. This is motivated from the well-known limitations that adverse 

weather poses on the LiDAR’s object detection performance, as well as the challenges 

of distance estimation in urban settings with curved road segments. In both cases, we 

will implement an actor-critic architecture for SA, where the actor represents the 

perception system, and the critic acts as a secondary system that continuously 

monitors and assesses the performance of the actor. Once the critic detects a 

performance degradation in the actor, it is supposed to trigger a handover request to 

the human driver in SAE L3, or a safe minimum risk manoeuvre in SAE L4 autonomy. 

The development of perception SA mechanisms is therefore crucial for enhancing the 

overall safety and trustworthiness of Automated Driving Systems (ADS). 

3.7.1 Self-assessment of LIDAR-based 3D Object Detection 
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Perception systems are responsible for accurately detecting, classifying and tracking 

road users in the vehicle's surroundings, serving as the foundation for the subsequent 

motion planning and control processes. Despite recent advancements, SOTA DNN-

based detectors, which are primarily employed for object detection tasks, remain 

susceptible to errors [131]. Because of that, various methods for the SA (or 

introspection) of DNN-based 2D/3D object detection systems have recently emerged, 

leveraging distinct input representations and techniques for identifying object 

detection errors [132].  

Existing introspection methods often rely on the confidence level of the object 

detector, as discussed in [133]. However, DNNs are known to perform poorly in 

estimating the uncertainty in their predictions, often being overconfident. Some 

studies aim to provide more accurate confidence scores within the main model by 

using methods such as sampling [134], confidence calibration [135], or confidence 

estimation [136]. Another approach for introspection involves detecting discrepancies 

(inconsistencies) through different systems running in parallel, exemplified by the 

comparison of the outputs provided by object detection and tracking in [137]. In 

controlled environments, a history-based SA technique has shown some promises, as 

investigated in [138]. Lastly, predicting when the detection performance, indicated by 

metrics like the mean average precision (mAP), would drop below a specific threshold 

can help in pinpointing errors, as detailed in [139], [140], and [141] for camera-based 

2D object detection. 

In the following, we describe a framework that leverages multi-layer neural activation 

patterns combined with spatial filtering to provide a detailed and dynamic SA 

mechanism for LiDAR-based 3D object detection. The SA framework is specifically 

trained to raise an alert when a vehicle or pedestrian is present but not detected 

within a defined area of interest around the ego-vehicle.  

Framework description 

The proposed framework uses neural activation patterns across multiple layers, 

combined with spatial filtering to focus on critical areas around the ego-vehicle. The 

SA pipeline, indicated by the red arrows in Figure 55, is detailed below. 
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Figure 55: Object detection and SA pipelines during inference. Black arrows indicate the flow 
of information for the object detector and red arrows for SA. 

Initially, neural activation patterns are extracted from various layers of the Backbone 

Network within the Object Detection model. These patterns are processed by a Neural 

Activation Pattern Operator, which applies custom preprocessing techniques or 

selectively use patterns from different parts of the Backbone Network. The processed 

activation patterns are subsequently fed into a ResNet18 model, which extracts 

features essential for SA. Lastly, a Fully Connected Network analyses these features to 

make an Error Prediction (binary output), determining whether the 3D object detector 

has accurately detected all relevant objects, or if potential errors exist. It is noted that 

the SA framework includes a Spatial Filtering mechanism to guide the model to focus 

only on the vicinity of the ego-vehicle. Although this is optional, it is naturally more 

practical to concentrate on the immediate surroundings for missed objects as opposed 

to creating alerts for missed objects that are far away. 

Qualitative evaluation example 

The performance of the developed mechanism is evaluated using the NuScenes 

dataset, which has been widely used in both introspection and ADS domains. For 

LiDAR-based 3D object detection, we employ the CenterPoint model, which is 

implemented in the Autoware Foundation’s software stack [142], while for the 

introspection model, various configurations are implemented, and their performances 

are compared. Specifically, we investigate the performance with five different settings 

of the Neural Activation Pattern Operator, refer to Figure 55.  

In the first three settings, we have used activation patterns from individual layers as 

follows: Processed point clouds (PPC), middle layer activations (MLA) and last layer 

activations (LLA). For the remaining two settings, we have combined neural activation 

patterns from multiple layers through two different combination approaches. The first 

approach, called CONCATENATION, simply concatenates multiple activations, i.e., 

PPC, MLA and LLA, and feeds the combined activations into the ResNet18 network. To 
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concatenate different activation maps, down-sampling might be needed to resolve 

any resolution mismatch. The second approach, called INJECTION, injects different 

activation patterns at different stages of the ResNet18 network to preserve 

information and provide robust SA output. 

 

(a)           (b) 

Figure 56: Spatially filtered point cloud. The detected objects (rectangles) are coloured in green 
while the missed object is coloured in red. The driving direction is from bottom to top (a). Early 
layer activation maps for each setting of the Neural Activation Pattern Operator illustrate the 
focus area of the SA model. Red hues represent high focus while blue hues indicate low focus 
(b). 

To better understand how the SA models perceive the scene across the five settings, 

we have used an input frame and visualised the areas of focus through activation maps 

from the early layers of ResNet18. We have generated these visualisations using 

Ablation-CAM [144], a well-known method for activation visualisation that removes 

individual feature maps and measures their impact on the prediction. For a more 

comprehensive visualization, we have extracted activation maps from all residual 

blocks.  

Figure 56 presents the input scene after spatial filtering at the left-hand side, alongside 

visualisations of activation maps for each of the five settings of Neural Activation 

Pattern Operator. The scene representation using point cloud includes green boxes 

for correctly detected objects and red boxes for missed detections, showcasing 

distinct patterns of critical areas used for classification. The visualisations highlight 

that while all five settings detect a missed object in the area of interest (“Error 

Detected”), the INJECTION method provides more focused attention on the missed 

object, whereas the attention in the remaining four settings is more scattered. This 

feature makes INJECTION our primary candidate for self-assessing 3D object detection 

performance with real-world data. 

3.7.2 Self-Assessment of Lead Vehicle Distance Estimation: 

Accurate distance estimation to the lead vehicle is essential for a range of automated 

driving functions, such as ACC, collision warning systems, and automated emergency 

braking. Various methods for distance estimation have been extensively explored in 

the literature. Monocular cameras, as discussed by [145], are widely used due to their 
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simplicity and cost-effectiveness, but they are particularly vulnerable in low-light 

conditions. Stereo cameras [146], which provide depth information by analysing the 

disparity between two camera images, offer improved distance estimation over 

monocular systems but also struggle in poor lighting and are computationally more 

demanding. Radar sensors [147] are commonly adopted, particularly in highway ACC, 

due to their robustness under adverse weather. However, they often suffer from 

limitations in urban environments where their relatively low spatial resolution and 

susceptibility to noise and signal clutter can hinder accurate distance measurements. 

LiDAR-based systems provide a more precise alternative for distance estimation with 

their higher range accuracy and the ability to generate detailed 3D representations in 

complex driving scenarios. LiDARs can effectively capture both the shape and position 

of surrounding vehicles and obstacles, making it a preferred option in urban driving 

where accuracy and comprehensive environmental perception are critical.  

In the following, a deep learning-based SA system is developed to evaluate the 

predictions of a LiDAR-based lead vehicle distance estimation system. The SA model 

takes as input the activation maps of the main model and predicts a trust indicator for 

the main model’s predictions. 

Framework description 

Figure 57 illustrates the block diagram of the SA framework. The distance estimation 

system includes the CenterPoint 3D object detector [148] and a lead vehicle filter. The 

filter first identifies the closest bounding box to the Ego vehicle on its planned 

waypoints, designating it as the lead vehicle. It then calculates the distance of the lead 

vehicle bounding box’s center along the waypoints’ path. If no lead vehicle is detected, 

the estimated distance is set to a maximum threshold. As illustrated in Figure 57, the 

SA model takes as input the early layer activation map generated by the point cloud 

processor. This activation map contains embedded information from the point cloud 

input, reflecting how the object detector interprets it. The ResNet18 model is used to 

extract relevant features from this input data. Finally, a Fully Connected Layer 

generates a binary output that classifies whether the distance estimator’s output is 

trustworthy or not. It should be noted that the SA model for trustworthy distance 

estimation illustrated in Figure 57 is different from that illustrated in Figure 1 for SA 

of 3D object detection, although the two models have similar architectures.   
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Figure 57: Distance estimation to the lead vehicle and SA framework generating a binary 
distance trust indicator during inference. 

The SA model for the distance estimation is trained using trust labels generated for 

each input frame. These labels are determined by comparing the ground truth 

distance to the lead vehicle with the estimated distance provided by the estimator. A 

distance error threshold is defined to specify the acceptable level of error for the 

subject application, e.g., urban chauffeur.  

Qualitative evaluation example 

Figure 58 shows an example of input point cloud data, the lead vehicle filter, and the 

estimated SA label at the top-left corner. The lead vehicle filter, indicated by the 

dashed lines, covers areas along the planned trajectory, extending 50 meters 

longitudinally and 1.5 meters laterally. Note that spatial filtering is not applied to the 

point cloud in this case. The solid black line is the planned trajectory of the ego-vehicle, 

and the green and red bounding boxes correspond to the ground-truth and predicted 

bounding boxes of the lead vehicle, respectively. A distance error threshold of 0.1 

meters has been selected to meet the high-accuracy localisation requirements for 

urban driving. The sample illustrated in Figure 58 is labelled “not trusted” by the SA 

framework, as the distance estimation error is more than 0.1 meters in this case.    
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Figure 58: An example of a point cloud sample and lead vehicle filter indicated by dashed lines. 

3.8 EXP8 (PERCIV): Emergency evasion manoeuvre under adverse 

weather conditions including perception self-assessment 

3.8.1 Introduction  

EXP 8 (“Emergency evasion manoeuvre under adverse weather conditions including 

perception self-assessment”) has the objective is to perform a collision avoidance 

manoeuvre (e.g. with leading vehicle, cyclist, etc.) in poor weather conditions on a 

potentially slippery road surface. 

Rain can influence the ego-vehicle in multiple ways. First, it makes perception harder 

as rain droplets and water stirred up by the tires hamper most automotive sensors'  

performance. Second, a wet, slippery surface could lead to vehicle instability, 

especially at the edge of its friction limits. 

Thus, it is not surprising that rain and wet pavement together cause significantly more 

accidents/fatalities (US average: 1400k/6k, based on U.S. Department of 

Transportation, 2007-2016) than snowy, icy, and foggy conditions together 

(570k/2.3k).  

With this motivation, in this experiment, Perciv AI and TUD will in later WPs present a 

"full stack" solution, i.e., starting from perception and understanding the environment 

(Perciv AI), to vehicle control (TUD) in rainy / wet pavement conditions. See Figure 59 

for an overview of the scenario. 
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Figure 59: High level overview of EXP 8’s scenario and main challenges. 

The high-level steps of this experiment are: 

1. TUD and PercivAI will create rainy conditions on a test track/dedicated road to 

replicate the desired scenario in a safe way. 

2. PercivAI will collect multimodal datasets similar to [149], including next 

generation 4D radar sensors, cameras, LiDARs, and GNSS systems using the 

artificially created and real rainy scenarios to train and tune their perception 

algorithms. 

3. PercivAI will use the collected data to develop novel, AI-driven radar 

perception algorithms, which will filter the input in multiple ways (e.g. ghost 

vs real radar points) and output a list of objects and estimated ego-

motion/odometry information based on the weather robust radar sensors. 

These outputs will be an input to TUD’s motion control module.  

4. Integrate a full stack pipeline into a TUD research vehicle, including the 

perception, the motion control, and their communication. See Figure 60 for an 

overview of the integrated pipeline. 
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Figure 60: Architecture of EXP8 with corresponding contributions of PercivAI and TUD. 

Given the scope of this document (D.3.2: Perception System and Self-Assessment), 

here we will focus on the description of the perception modules of the experiment, 

i.e., PercivAI’s work. In Work Package WP3: “Perception”, PercivAI participates in Task 

T3.2: “Semantic Scene Analysis and Precise Localization”, targeting scenarios with 

heavy raining and wet surfaces, responsible for two main components: Scene 

segmentation and Localization. 

3.8.2 Scene Segmentation 

Segmentation of ghost targets, noise suppression 

In the scenario targeted in EXP 8, droplets are in the air not only from the rain itself, 

but also from leading vehicles which stir up the water from the road surfaces. Both 

kinds of droplets can disadvantageously influence all types of sensors available for 

intelligent vehicles: cameras, LiDARs, and even radars. Furthermore, radars are known 

to be noisy and sensitive to multipath effects, reporting reflections at incorrect 

locations, see Figure 59. Thus, the perception module needs to filter or, in other 

words, segment ghost and real reflections to suppress noise. 

Segmentation of moving targets 

After segmenting real and ghost target, it is important to segment which parts of the 

scene are moving, and which parts are static. This distinction is highly beneficial for 

many use cases, e.g., detecting and predicting future positions of moving objects 

nearby or using the static environment to reliably estimate the ego-motion of the 

vehicle. Furthermore, in general, explicitly paying more attention to moving objects 

can literally save lives, as these objects are usually road users in the addressed 

scenarios. One important aspect to discuss is that radar can measure velocity of its 

reported reflections, which may suggest that this task is straightforward. However, 

radar reports only relative and only radial velocities, while we are interested in moving 

objects in the absolute sense, even if they move tangentially, similarly to [150] or 

[151]. 
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Segmentation by class 

After segmenting real, moving targets, we proceed to classify them semantically. That 

is, we must assign a road user class (e.g. car, cyclist, pedestrian) to the segmented 

moving radar points. This is beneficial to better estimate their future movements and 

plan around them in a safe and reliable way as explained in [152], [153]. 

 

Figure 61: Proposed architecture of the multipurpose, sequential radar segmentation network. 

Proposed Solution 

Realizing that the subtasks discussed above are sequential in nature, PercivAI 

designed, developed, and implemented a radar point cloud segmentation network 

which exploits this, see Figure 61. The algorithm takes a radar point cloud as an input, 

then segments real targets, of those, the moving targets, and finally, of those, the 

classes of interests. The novelty of the method lies in the fact that unlike the SOTA 

methods ([150], [151], [152], [153]), it performs all three tasks in a single network. See 

Figure 62 for qualitative results from the multitask network, which shows example 

outputs of our network performing real target, moving target, and semantic 

segmentation at the same time. Note how the network can detect the pedestrian and 

the car in the shadows, which would be challenging for a camera. 
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Figure 62: Qualitative results from the multitask network 

3.8.3 Localization 

As shown in Figure 60, PercivAI is expected to provide not just a scene understanding, 

but also an estimation of the ego-vehicle’s odometry. As explained in Section 0, 

segmenting moving, and static points is highly beneficial for this tasks, as static points 

can be used as “anchor points” to which we can compare and measure the ego-

vehicle’s motion. It is worth mentioning that by utilizing the output of the network 

introduced above we also save computational resources.  

The sequence of static radar point clouds is then fed to a point cloud-based SLAM 

method, KISS-ICP [154], modified for radar data in terms of input channels, expected 

density, and trust in potentially multipath reflections.  
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As a result, our pipeline can accurately estimate the odometry of the ego-vehicle using 

purely the radar point cloud as an input; see Figure 63 and Figure 64 below for 

qualitative examples. Top-left shows the camera image, while the other two views 

show the current radar scan (dark green points) and the accumulated, mapped points, 

nicely forming the map of TUD campus (green-yellow, colored by time). 

 

Figure 63: Qualitative result of radar based ego-motion estimation, Example I. 

 

 

Figure 64: Qualitative result of radar based ego-motion estimation, Example II. 

4. Conclusions 
This Deliverable 3.2 concludes the report on the work performed within WP3 in the 

EVENTS project, which was partially described in D3.1 [25]. The aim of this work 

package is to provide the machine perception system and SA capabilities needed to 
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facilitate the various experiments (EXP1-EXP8), as these are specified by the EVENTS 

project partners in D2.1 [82] and D2.2 [83]. 

In T3.1, we explored the use of existing public datasets, described a newly acquired 

road debris dataset, covered data generation based on manual annotation and 

simulation, and presented an approach for self-supervised learning for object 

detection. 

In EXP1 a LiDAR-based environment perception pipeline was developed, where a deep 

learning-based detector detects objects from a set of predefined classes, e.g., car, 

bike, and pedestrian. We also use a traditional clustering approach to segment generic 

objects that are not part of the above set of classes. An object merger combines the 

detections of both methods and discards near-identical duplicate detections. A multi-

object tracker tracks detected objects across time, and a motion prediction 

component predicts the future path of each tracked object. As part of WP5, we aim to 

integrate the more sophisticated map-based PGP motion-prediction of [156], which 

allows multi-modality in the prediction. 

In EXP2, a cooperative motion prediction framework was developed. The core 

prediction model is based on the SOTA model HiVT [13] without relying on a specified 

map for general applicability. Two distinct methods (Euclidean and BBox clustering) 

were evaluated for the association of multiple overlapping detections. The results 

demonstrate that V2V-enhanced predictions achieve a better understanding of the 

traffic scene. 

To support V2V information exchange, TECN and ICCS jointly designed custom JSON 

file formats that host the information disseminated by (custom) CAMs and CPMs. The 

specification of the corresponding JSON structure and data field definitions were 

based on ETSI documents [16-19]. 

A novel algorithm for probabilistic fusion of CAM and CPM information was designed, 

aiming at end-to-end explainability, parameter interpretability and the provision of 

inherent reliability indicators for the output. The algorithm uses non-linear particle 

localization filters and employs a custom ray-tracing algorithm for FoV calculation, 

which facilitates information consistency checks. The derived output is a probabilistic 

occupancy grid, inherently accounting for the locality of (collective) perception 

reliability. 

TECN will continue the development of the cooperative motion prediction framework 

towards additional consideration of detector confidence and extending the study in 

other collaborative domains within simulated environments. ICCS will further adjust 

and test the proposed CAM/CPM fusion algorithm in custom CARLA scenarios, with 

camera/LiDAR fusion as an elementary perception stack. Setting the derived 
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occupancy probabilities as priors for the next time step will be also studied as tracking 

scheme during the module evaluation work in WP6. TECN and ICCS will continue joint 

efforts to integrate the probabilistic occupancy grids generated by ICCS into the V2X 

communication system in a hybrid setup developed by TECN. These occupancy grids, 

communicated via the ROS nav_msgs/OccupancyGrid format, will be derived from the 

3D detections made by the individual perception stacks of the involved CAVs and will 

provide a detailed map of the environment. This will enhance the situational 

awareness of the CAVs, providing a more accurate representation of the surrounding 

space and potential obstacles.  

In EXP3, a SA framework has been developed and evaluated for object-tracking 

algorithms based on subjective logic, tested both in simulation and on real-world data. 

These methods were presented at scientific conferences, including work by Griebel et 

al.[87][88]. Future efforts as part of WP5 will focus on integrating these SA approaches 

into UULM’s test vehicle for real-world applications to enhance safety and robustness 

in autonomous driving. 

For EXP4, we have developed a pipeline for updating pre-existing HD-map under road 

work conditions. Our model assumes traffic bollards are being used to separate 

drivable vs non-drivable lanes, where such bollards are then used to determine the 

updated lane boundary. We will provide quantitative results regarding the accuracy 

of the updated HD-map in WP6.  

In EXP5, HIT and TECN in collaboration designed and implemented a predictive 

perception system that can reliably detect and track multiple 3D objects moving at 

various speeds in real-time (Hitachi's contribution), and forecast their future 

movements based on historical trajectories (TECN’s contribution). WMG also 

contributed to this experiment a SA mechanism for the perception system. This 

combined system provides the ego-vehicle with quick and reliable information for safe 

decision-making at intersections. These modules were developed and tested using 

data collected by Hitachi’s demo vehicle. In WP6, we will perform a more quantitative 

evaluation of the developed algorithms and aim to integrate the developed algorithm 

into the demo vehicle in WP5. 

In EXP6, the data collection of a new debris dataset was accomplished. An 

overdriveability classifier has been trained on the gathered data. Additionally, the 

performance of the perception stack was qualitatively described with examples. Our 

next steps are to perform a quantitative analysis of the perception algorithm 

performance in WP6 and to integrate it on the demo vehicle in WP5.  

Within EXP7, SA mechanisms for LiDAR-based 3D object detection and relative 

localization to the leading vehicle were developed. These mechanisms were evaluated 

using public datasets and demonstrated superior performance compared to the 
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current state-of-the-art. The next step involves implementing these mechanisms into 

WMG’s experimental vehicle platform (WP5) and evaluating their performance using 

real-world data (WP6). 

Within EXP8, methods were developed for scene segmentation (covering noise, 

movement, and semantics) and ego-motion estimation based solely on radar, making 

the solution highly robust to weather conditions. The aim is integration in WP5 with 

TUD’s work on control in WP4, and quantitative testing in WP6. 
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