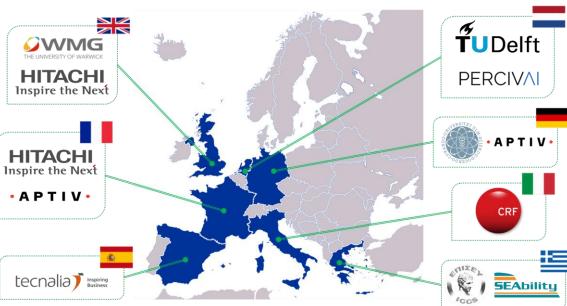
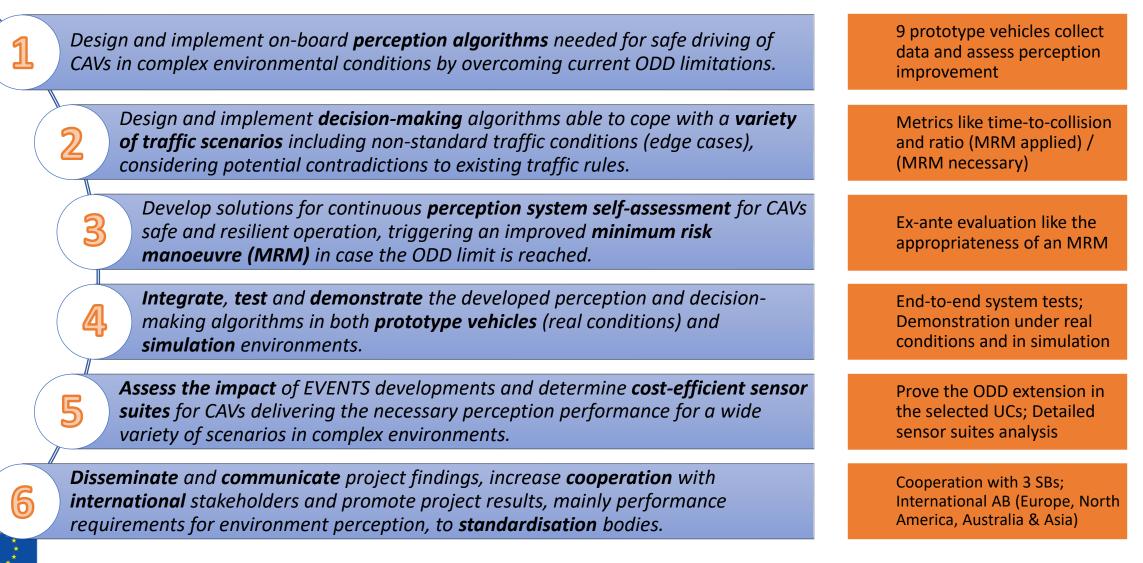
ReliablE in-Vehicle pErception and decisioNmaking in complex environmenTal conditionS (EVENTS)

Dr. Bill Roungas, ICCS 24 September 2024

Overall Project Presentation



General facts and figures


- Title: ReliablE in-Vehicle pErception and decisioN-making in complex environmenTal conditionS (EVENTS)
- Call: HORIZON-CL5-2021-D6-01
- Topic: HORIZON-CL5-2021-D6-01-01
- Type of Action: Innovation Action
- Starting date: 1st September 2022
- Duration: 36 months
- Budget: 6.920.598 euros | EU Funding: 5.534.448 euros
- Consortium: 12 partners (2x2 associated) from 7 countries

Objectives

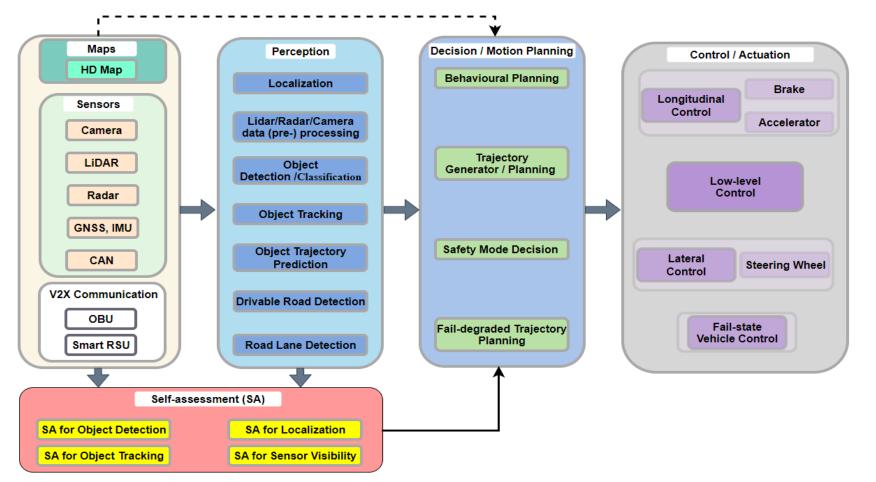
Funded by the European Union

Results Presentation

Use Cases & Experiments

Use Cases

- <u>UC1</u>: Interaction with Vehicles and VRUs in Complex Urban Environment
- <u>UC2</u>: Non-Standard and Unstructured Road Conditions
- <u>UC3:</u> Low Visibility & Adverse Weather

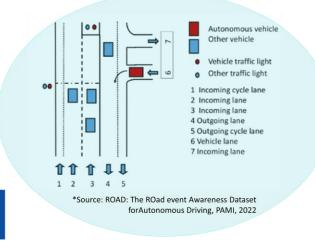

Experiments

- **EXP1**: Interaction with VRUs in complex urban environment.
- **EXP2**: Re-establish platoon formation after splitting due to roundabout.
- **EXP3**: Self-assessment and reliability of perception data with complementary V2X data in complex urban environments.
- **EXP4**: Decision making for motion planning when faced with roadworks, unmarked lanes, and narrow roads with assistance from perception self-assessment.
- **EXP5**: Decision making for motion planning when entering a jammed highway.
- **EXP6**: Small object detection at a far range in adverse weather conditions.
- **EXP7**: Localization/perception self-assessment for advanced ACC and other vehicles' behaviour prediction under adverse weather or adverse road conditions.
- **EXP8**: Driving on secondary roads under adverse weather.

System Architecture

Funded by the European Union

Data Generation & New Datasets


Data Generation from Simulation

 Creating artificial bad weather images from original images using ML

for autonomous driving, ICCV, Oxf Brookes Uni

Annotating events in videos using ML

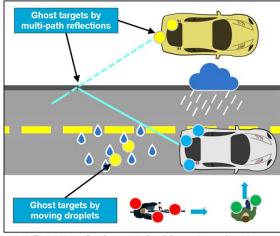
New Road Debris Dataset

- A prototype vehicle equipped with a front-facing radar and a GNSS/IMU system is used to collect data on a test track
- The debris is positioned on a straight line marked on the test track

• Collection of 47 different objects from 1cm to 3m

12cm was deemed the cut off height for overdriveable

ROADVIEW CCAM Cluster Event

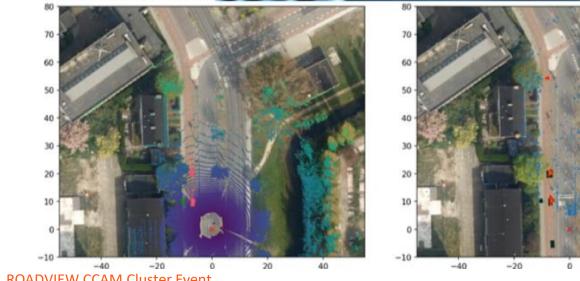

Funded by the European Union

.

Object detection with 4D radars, segmentation and localization

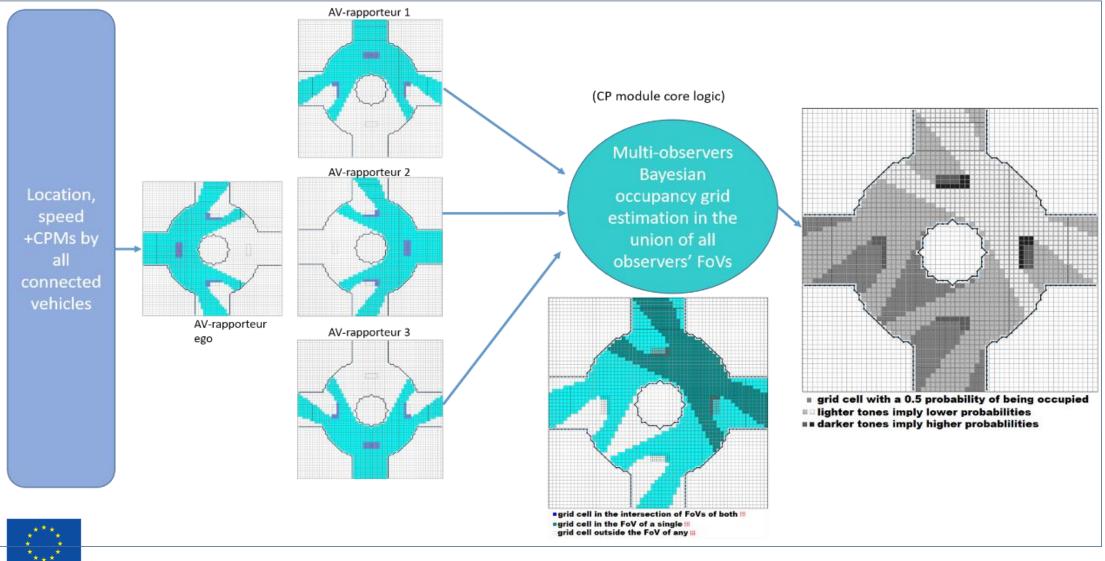
- We can locate on the map:
 - The car itself
 - Segmented point cloud
 - Detected objects

1 Illustration of radar point clouds' sparsity and noisiness.



20

9



ROADVIEW CCAM Cluster Event

Funded by the **European Union**

Collective Perception Messages

Funded by the European Union **ROADVIEW CCAM Cluster Event**

10

Mid- to Long-Term Expected Impacts of the Project

Expected Outcome	Dimension	Metric
Cost-efficient sensor suites	Technological/Economic	Cost benefit analysis for sensor suites
Advanced environment and traffic recognition and prediction	Technological/Societal	Decrease false detections and non- detections of VRUs by at least 10%
Determine the appropriate course of action of a CAV in a real-world environment	Technological/Societal	Compare appropriate course of action with action suggested by EVENTS algos
Safe and reliable operation of automated vehicles in expanding ODD	Technological	≥3 OEMs & 1 Tier 1s interested in building on EVENTS results on ODDs expansion
Standardization mandate for performance requirements for environment perception systems with respect to different automation levels and ODDs	Technological	≥2 relevant WGs in standardisation orgs consider input from EVENTS

Long-Term Expected Impact

Expected Outcome	Dimension	Metric
Validated safety and security, improved robustness and resilience of CCAM technologies and systems	Technological/Societal	Decrease by 10% the critical cases where CAVs are involved.
Secure and trustworthy interaction between road users, CCAM and "conventional" vehicles	Technological/Societal	High detection rate of VRUs and other objects limiting false detections and non- detections at least by 10%
User oriented CCAM based mobility and goods deliveries for all	Societal	High public acceptance rate (>80%) of EVENTS results
Better coordination of R&I and large-scale testing activities in Europe	Societal	Exchange of information and liaise with ≥2 other CCAM projects on a regular basis (Hi-Drive & ROADVIEW)
European leadership in the development and deployment of CCAM systems	Societal	Creation of highly-skilled jobs in automotive industry

www.events-project.eu

EVENTSproject22

Thank you for your attention!

Dr. Bill Roungas, ICCS v.roungas@iccs.gr

This project has received funding under grant agreement No 101069614. It is funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission. Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union