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Abstract— We propose a general covariance estimation
method for relative pose measurements using deep learning.
Our approach extends previous system specific covariance
estimation models. Such models map input images acquired
from two different viewpoints to a covariance estimate. While
such models have successfully been applied to relative pose
measurements obtained from visual odometry, the extension
to the general system scenario is rather more challenging.
In this paper, we propose to map both the inputs images
acquired from two viewpoints along with the relative pose
measurement to a covariance estimate. By including the relative
pose measurement as an additional input to the mapping, we
show that it is possible to predict covariance for general relative
pose measurements.

I. INTRODUCTION

Covariance estimation is a challenging task for non-
stationary error distributions, this is particularly true for
covariance estimation for relative pose measurements; that is,
the motion of a robot between two different time instances.
Fusion of relative pose measurements obtained from either
a single system or from multiple systems is important for a
variety of tasks related to robotic localisation and mapping
[1][2][3]. The inclusion of uncertainty (covariance) in the
measurement fusion process can reduce estimation errors via
filtering or smoothing. However, estimating the uncertainty
of relative pose measurements can be a challenging task due
to the dependence of uncertainty on the system utilised to
extract such a measurement. This is exemplified by relative
pose measurements obtained from visual odometry (VO)
where it is apparent that the error distribution can vary based
on the texture [4], as well as the number of dynamic objects
in the scene.

As a result, the work in [5] proposed a CNN based
covariance estimator of relative pose measurements obtained
via visual odometry. This was achieved by mapping the
input images (as processed by VO) to a covariance esti-
mate. Furthermore, the authors in [5] hypothesised that their
method could be extended to the uncertainty estimation of an
arbitrary relative pose measurement system (albeit this was
not clearly explored in the paper). The work in [7] proposed
an extension of [5] by estimating both a correcting relative
pose and a covariance using a modified loss function along
with larger CNN model. Whilst the estimation of a correcting
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Fig. 1: Proposed covariance estimation method for relative
pose measurements. The model processes both images ac-
quired from two different views along with the measured
relative pose between the two views.

pose is outside the scope of this paper, the work demonstrated
good results on covariance estimation when applied to the
KITTI dataset.

In this work we propose a general covariance estimator
for relative pose measurements obtained from an arbitrary
system. We achieve this by extending the method in [7] as
follows, 1) we propose to process both input images acquired
from two viewpoints along with the measured relative pose
(shown in Fig. 1), and 2) following the work in [11] we
assume independent and identically distributed translation
and orientation parameters (i.e. a diagonal covariance matrix)
in order to reduce the number of redundant covariance
parameters being inferred. Our proposed model is capable
of predicting covariance of the relative pose measurements
without the need to train specialised models for a specific
sensing system. We demonstrate both quantitatively and
qualitatively the performance of our proposed model on the
KITTI dataset.

II. PRELIMINARIES

In this work we consider robotic motion with 6 degrees
of freedom (3 translation and 3 rotation parameters), that
is, motion in 3D space. Furthermore, for a given sensor
s and time instants i and i + 1 we have a relative pose



Image 

Warping

Depth 
Model

Warp
Operation

…

Fig. 2: Proposed covariance prediction model that computes covariance for a general relative pose measurement. The input
consists of images acquired from two different viewpoints along with the measured relative pose, while the output is the
estimated covariance. The model utilises the measured relative pose via an image warping operation, thereby enabling the
covariance estimate to vary according to measured relative pose.

measurement (or estimate)
i
T̂i+1 ∈ R4×4. We consider the

following problem, namely, given the error of the relative
pose measurement ei (computed for sensor s), we aim to
estimate the covariance Ri ∈ R6×6 of the error distribution
which is assumed to be Normally distributed [5],

ei ∼ N (0, Ri), (1)

where it should be noted that this formulation assumes that
the error is independently distributed but not identically
distributed, thereby capturing the heteroscedastic nature of
relative pose measurement errors. The error ei, is computed
as follows,

ei = log(
i
T̂i+1

iT-1
i+1), (2)

where iTi+1 is the ground truth relative pose and log is the
logarithmic map from a pose matrix (SE(3) group) to a pose
vector (R6 vector) [9].

III. PROBLEM STATEMENT AND RELATED WORK

The primary aim of this work is to estimate the covariance
Ri of the error ei for a relative pose measurement (or
estimate) obtained between two different time instants, i and
i + 1, that is independent of the sensor s (a relative pose
measurement obtained from an arbitrary sensor) [6]. More
formally, given an input that contains both a set of images
Ii and relative pose measurement

i
T̂i+1 obtained from an

arbitrary sensor s, we aim to predict an output that is the
covariance,

Ri = g(Ii,
i
T̂i+1). (3)

Our problem formulation builds on existing work [5][7] that
developed covariance estimation models around a specific
sensor, namely VO relative pose measurements. The super-
vised learning problem formulated for the previous work was
formulated as follows

Ri = g(Ii). (4)

While the formulation in (4) is able to learn mappings
between the set of input images and the covariance for
VO, generalisation to an arbitrary relative pose measurement
system is more challenging (owing to the reliance on on the
input data Ii).

IV. PROPOSED METHOD

We now describe the details of the covariance prediction
model shown in (3), where the input consists of following,

• Set of monocular1 colour images Ii = {Ii, Ii+1} ob-
tained at time indices i and i+ 1.

• The measured relative pose
i
T̂i+1.

The output is the predicted covariance Ri for the mea-
surement

i
T̂i+1. The architecture of our proposed method

is shown in Fig. 2 and consists of two functional stages.
The first stage leverages the measured relative pose via the
warping operation of the image obtained at time instant i
(more detail in Section IV.A) and the second stage predicts
the covariance given the warped image along with the raw
image obtained at time instant i + 1. In the following

1It should be noted that our work can easily be extended to stereo images.



subsections we provide further explanation on the respective
stages.

A. Input Image Warping

Our proposed first stage warping operation enables the
utilisation of the measured relative pose when predicting
covariance. The warping operation is based on the spatial
transformer method in [10] and aims to construct an image
of the target view (i.e. the warped image), given: the source
view image, the dense depth estimate of the target view and
relative pose between the source and target view [12][13].
We consider the image acquired at time index i as the source
view image, while image acquired at time index i+1 as the
target view image. The key idea of the warping operation is
to first project the pixel coordinate (pi+1) in the target view
image to a pixel coordinate (pi) in the source view image,

pi = K
i
T̂i+1Di+1K−1pi+1, (5)

where K is the camera intrinsic matrix and Di+1 is the
estimated depth for each pixel in Ii+1. An interpolation
method (bilinear) is then used to compute an intensity value
for the projected pixel, given nearby source pixels [10],
yielding the warped image Iwi+1.

B. Covariance Prediction

The covariance prediction network takes concatenated im-
ages (Ii+1, Iwi+1) as input and produces the predicted covari-
ance Ri. We follow the network architecture described in [7]
(shown in Table. I), that is, a first stage convolutional encoder
followed by a second stage fully connected regression head.
Our proposed warping operation enables the utilisation of the
estimated relative pose during covariance inference, owing to
the warped image Iwi+1 varying according to

i
T̂i+1; that is,

the network learns a mapping that considers the variation of
Iwi+1 with respect to the image Ii+1.

The intuition for our proposed method can be motivated
by the following simple example. Consider a stationary robot
that has acquired the same image at two different time
instances (Ii = Ii+1 = I). The robots measured relative
pose is given by,

i
T̂i+1 = ϵ, where ϵ is perturbing pose

matrix. Given that the ground truth relative pose is equal to
the identity matrix (i.e. no motion), then the covariance is
a function of the perturbing pose ϵ. The methods in [5][7]
would predict a covariance that is invariant to the perturbing
pose ϵ as the input to the networks are the concatenated
raw images (Ii, Ii+1). While our proposed method would
consider the perturbing pose via the warping operation
therefore enabling the network to predict a covariance that
varies according to the perturbing pose.

C. Loss Function

We propose to utilise the log-likelihood loss function while
assuming a diagonal covariance matrix (departure from the
full covariance estimation of previous methods [5][7]), that
is,

argmin
R1:N

N∑
i=1

−log(p(ei|Ri)), (6)

where Ri = D(exp(di)), di ∈ R6 is output of the network
and D(·) maps a vector to a diagonal matrix. Given a
diagonal covariance matrix the evaluated loss function is
given by,

argmin
d1:N

N∑
i=1

sum(di) + eTi R
−1
i ei. (7)

Our independence assumption on motion parameters allevi-
ates the following problems, 1) a simplified loss function
that is more stable during training (no need to compute
matrix decomposition’s of covariance), and 2) given that we
are assuming independently distributed but not identically
distributed measurements, we reduce the mismatch between
degrees of freedom (d.f.) between the covariance and mea-
surement (i.e. both have six d.f.).

V. EXPERIMENTS

A. Training Details

Our proposed model includes a depth estimation network
along with a covariance estimation network. For the depth
estimation network we propose to utilise the pre-trained
monocular depth network proposed in [11] and more specifi-
cally the 1024x320 version. The model was trained using the
KITTI dataset using the Eigen split [15] (we will discuss this
point further when we present our KITTI data split) and we
do not update the weights during our training. We compute a
scale factor (as described in [11]) to convert unscaled depth
to a metric depth estimate by using the mean radial distance
derived from LiDAR measurements. Given that stereo depth
estimation models outperform scaled monocular depth es-
timation models [16], the use of LiDAR measurements for
monocular scale estimation is not unreasonable for obtaining
metric depth.

The hyperparameters for covariance estimation network
training were set as follows; batch size: 84, optimiser: Adam,
and learning rate: 1e-04. We stopped training according to
[7], that is, once we observed diverging train and evaluation
losses. Furthermore, similar to [5] we applied a dropout layer
at the output of each convolutional layer with dropout rate of
50%. Finally, all experiments were carried out using Nvidia
GeForce RTX 3080Ti.

B. Experimental Setup

1) Dataset: We evaluate the proposed method on the
KITTI dataset as it contains a diverse range of driving
scenes [14]. Following the work in [7] we use the following
sequences for training and testing: 04-10; where the train and

Layer Kernel Size Stride No. of outputs
c1 5x5 2 64
c2 5x5 2 128
c3 3x3 2 256
c4 3x3 2 512
c5 3x3 1 1024
fc1 - - 128
fc2 - - 6

TABLE I: Network architecture based on the model in [7].
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(a) Proposed method - System 1
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(b) [7] - System 1
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(c) Proposed method - System 2
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(d) Proposed method - System 1
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(e) [7] - System 1
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(f) Proposed method - System 2

0 200 400 600 800 1000 1200
Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
a
w
2

1e− 5

(g) Proposed method - System 1
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(h) [7] - System 1
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(i) Proposed method - System 2

Fig. 3: The estimated covariance (blue line) overlaid onto the squared error (red line) for the following motion components:
the translation covariance along x-axis (top row), the translation covariance along y-axis (middle row), and the yaw rotation
covariance (bottom row). Additionally, the predicted covariance corresponding to system 1 relative pose measurements are
shown in the left and middle columns, while predicted covariance corresponding to system 2 measurements are shown in
the right column. Finally, note that our model is able to process relative pose measurements acquired from different systems.

evaluation/test split follow the work in [11], where sequence
10 is used for evaluation/testing (N = 1, 223) and all other
sequences are used for training (N = 12, 016). Finally, the
Eigen split includes a subset of images from sequence 10
in its train set. We do not consider this to be an issue as
the depth accuracy (root mean square error) for Eigen train
(3.28m) set is almost equal to that of Eigen evaluation set
(3.38m) for KITTI sequence 10.

2) Sensor measurements: We seek to demonstrate the capa-
bility of our model in estimating covariance for an arbitrary
relative pose measurement. To this end, we propose to utilise
the following systems for computing relative measurement,
- System 1: Relative pose measurement derived from sparse
visual odometry techniques (in particular, feature matching
based sparse visual odometry [8]),

i
T̂V O

i+1.

- System 2: Relative pose measurements,
i
T̂GNSS

i+1 , derived
from GNSS, where the objective of including this measure-

ment is to demonstrate that our method should be able to
predict covariance for low uncertainty measurements. We
also consider the ground truth (iTi+1 =

i
T̂GNSS

i+1 ) to be
GNSS relative pose.

For each relative pose measuring system we also have
the same image pairs Ii and Ii+1; that is, for the same
pair of viewpoints, the error distribution of the relative pose
measurement varies according to the system. Our model was
trained using system 1 and system 2 measurements, where
for each mini-batch during training, we maintain 75% of the
data from system 1, and 25% from system 2; owing to the
disproportionately high impact of system 2 measurements
(zero squared error) on the loss as compared with system 1
measurements. Finally, the method in [7] was trained using
system 1 measurements.

3) Evaluation metrics: We use the median dispersion
error (MDE) (a variation of median absolute error) to
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Fig. 4: Boxplots of the dispersion errors (that is, error between predicted covariance and ground truth relative pose error)
for translation and rotation motion components. Our proposed model is able to process system 1 (top row) and system 2
(bottom row) relative pose measurements in order to predict a covariance. For reference, we have included results of the
predicted covariance evaluated against the ground truth errors of system 2 measurements using the method in [7].

quantitatively evaluate our proposed method,

MDEc = median
(√

|Ri,c − e2i,c|
)

for i = 1, .., N

where c corresponds to each motion component (e.g. x-
translation), while Ri,c correspond to the diagonal element
of the covariance corresponding to each motion component.
Finally, given the statistical assumptions used in this work
(i.e. identically distributed errors), we assume that ground
truth of covariance is given by e2i .

Rel. Pose. Meas. Metric
Proposed
Model [7]

MDEx 0.049 0.052
MDEy 0.054 0.054

System 1 MDEz 0.0066 0.0084
MDEroll 5.0e-04 6.3e-04
MDEpitch 5.5e-04 6.1e-04
MDEyaw 5.2e-04 5.1e-04
MDEx 0.0037 0.056
MDEy 2.76e-06 0.060

System 2 MDEz 7.17e-07 0.0090
MDEroll 1.04e-06 5.0e-4
MDEpitch 1.05e-06 5.5e-4
MDEyaw 2.46e-07 5.2e-4

TABLE II: MDEc computed for all motion components
(translations and rotations) for both the proposed method and
[7], along with the relative pose measurements acquired from
both system 1 and system 2.

C. Experimental Analysis
In this section we analyse the performance of our proposed

method using the evaluation dataset. In particular, we directly
compare the performance of our proposed method with [7]
for system 1 measurements (as [7] can only be trained on
relative pose measurements acquired from a single system),
while simultaneously highlighting the performance of our
model in processing system 2 relative pose measurements.
The rows in Fig. 3 show the output of the predicted covari-
ance for the following motion components: x-translation (top
row), y-translation (middle row) and yaw-rotation (bottom
row); while the columns in Fig. 3 show the following
methods: proposed model processing system 1 measurements
(left column), [7] processing system 1 measurements (middle
column), and proposed model processing system 2 mea-
surements (right column). From Fig. 3 we can qualitatively
assess that covariance predicted for system 1 measurements
using our proposed method (Fig. 3 (a),(d),(g)) is similar to
the method in [7] (Fig. 3 (b),(e),(h)). If the relative pose
measurement is acquired from system 2, we can observe that
our proposed model is able to vary the predicted covariance
(Fig. 3 (c),(f),(i)). It should be noted that our proposed model
generated spurious artifacts when predicting covariance for
system 2 measurements. We do not know the exact cause,
but we speculate it may be related to the size of the training
data set.

Table. II shows the median dispersion errors for all trans-
lation and rotation components for the respective methods



and systems. Additionally Fig. 4 shows the corresponding
box plots of the dispersion errors (DEc). For system 1 mea-
surements, both the MDE scores (shown in Table. II) and the
box plots of the dispersion errors (top row Fig. 4) are similar.
While for system 2 measurements, it can be observed the
proposed method is able to predict covariance that is close
to the ground truth squared error, demonstrating the potential
for our system to adapt the predicted covariance according
to the relative pose measurement system (for reference we
have included MDE scores and corresponding boxplots for
the predicted covariances of system 2 measurements using
[7]).

VI. CONCLUSIONS

In this work we have proposed a covariance estimation
method for relative pose measurements obtained from an
arbitrary system. We achieve this by utilising the measured
relative pose along with the images acquired between the two
viewpoints in order to compute a covariance. We demonstrate
the ability of our model to estimate covariance for relative
pose measurements obtained from two different systems,
while existing state of the art methods are limited to mea-
surements obtained from a single system. Finally, in future
work, we aim to investigate viewpoint synthesis via NeRFs
[17] as replacement to image warping, along with relative
pose measurement generation to augment existing real world
datasets.
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