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Executive Summary 
 

Work Package 6 (WP6) focuses on evaluating the EVENTS experiments, that were 

prepared and implemented in WP5. To accomplish this, dedicated methods and 

algorithms will be developed for the effective analysis and evaluation methodology of 

the use cases (as defined in WP2). Within WP6, the relevant scenarios and data will 

be collected, which will allow to generate the test-cases for the overall evaluation of 

the EVENTS experiments from the technical perspective, with regards to their 

efficiency and their capability to extend the related ODD. 

The main focus of this document (Deliverable D6.1) is to describe in detail the testing 

plan and the evaluation procedures for each system developed in the project, taking 

into account SOTIF verification procedures. This is the outcome of T6.1 dealing with 

the evaluation methodology and the respective scope. 

The final results of the evaluation will be reported in deliverable D6.2 “Technical 

evaluation results”, due on M36. 
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 Introduction 

1.1 Project aim 

Driving is a challenging task. In our everyday life as drivers, we are facing unexpected 

situations we need to handle in a safe and efficient way. The same is valid for 

Connected and Automated Vehicles (CAVs), which also need to handle these 

situations, to a certain extent, depending on their automation level. The higher the 

automation level is, the higher the expectations for the system to cope with these 

situations are. 

Today, CAVs are facing several challenges (e.g., perception in complex urban 

environments, Vulnerable Road Users (VRUs) detection, perception in adverse 

weather and low visibility conditions) that should be overcome to be able to drive 

through these events in a safe and reliable way. 

Within our scope, and, to cover a wide area of scenarios, these kinds of events are 

clustered under three main use cases: a) Interaction with VRUs, b) Non-Standard and 

Unstructured Road Conditions and c) Low Visibility and Adverse Weather Conditions. 

Our vision in EVENTS is to create a robust and self-resilient perception and decision-

making system for AVs to manage different kind of “events” on the horizon. These 

events are due tothe dynamic changing road environment (VRUs, obstacles) and/or 

due to imperfect data (e.g., sensor noise and communication failures) and/or due to 

challenging ODD conditions (e.g. entering a road construction zone). The EVENTS AV 

should continue and operate safely within its ODD and near ODD limits due to its 

advanced perception and decision making as well as due to its self-assesment 

features. When the EVENTS system cannot handle the situation, an improved 

minimum risk manoeuvre should be put in place. 

1.2  Deliverable scope and content of the Document  

In the EVENTS project, WP6 is responsible primarily with the evaluation of the 

experiments, as those are defined in EVENTS Deliverable D2.1: User and system 

requirements for selected use cases [1], and to a lesser degree with the cost efficiency 

of sensor suites. The main focus of this document is to describe, in detail, the testing 

plan and the evaluation metrics for each experiment, by also taking into account 

functional safety concept as this has been identified and reported on system level, in 

EVENTS Deliverable D2.3: Vehicle System Hazard Analysis and Risk Assessment [3]. 

The content of this document is the outcome of T6.1, which deals with the evaluation 

methodology and the respective scope, and which will provide input for the 

subsequent tasks T6.2 & T6.3. 
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T6.2 is concerned with the data collection from the execution of the experiments and 

their preparation for the analysis. T6.3 is concerned with the technical evaluation of 

each experiment, using the methodology proposed in task T6.1 and the data collected 

in task T6.2. The results dealing with the performance of the different experiments, 

i.e., the outcome of tasks T6.2 & T6.3, will be documented in deliverable D6.2 

(Technical evaluation results).  

The document has the following structure: 

• In Chapter 2, the methodology, including the high-level research questions and 

the testing and evaluation methods, is described. 

• In Chapters 3 to 10, the individual evaluation setup of EXPs 1 to 8 respectively, 

are presented. 

• Finally, in Chapter 11, the document is concluded and final remarks are 

reported. 
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 Methodology 
The evaluation objectives consider a) the individual modules within the perception & 

decision-making layers of each EVENTS vehicle system, b) each architectural layer 

separately, i.e., perception and self-assement layer and decision making and control 

layer as well as the integrated vehicle system as a whole. Therefore, different key 

performance indicators are proposed for each subsystem/system. 

Based on the use cases and distinct experiments defined in WP2 [1] and the underlying 

architecture of each vehicle sub-system system in EVENTS described also in WP2 [2], 

D6.1 establishes the objectives (RQs) and the methods for the project evaluation, 

including the candidate testing environments and, when available, an indication of the 

most important functional scenarios [21] to be considered. 

With respect to functional safety evaluation, the methodological process of the 

evaluation follows a traditional V-model, as shown in Figure 1, enhanced with Safety 

Of The Intended Function (SOTIF) aspects (as defined in the ISO 21448 [23]), as shown 

in Figure 2. This means that to a certain extent permitted by the project’s timeplan, 

the evaluation runs in an iterative mode where results from simulations or test tracks 

are expected to feed back the modules’ development work in WP3 and WP4. As shown 

in Figure 1, which depicts a simplified illustration of the V-Model process in ISO 26262, 

both component-level and system-level tests are considered by the ISO standard. 

 

Figure 1: Traditional V-model [18] 
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Figure 2: V-model enhanced with SOTIF aspects [20] 

Based on the V-model enhanced with SOTIF aspects, two approaches for the system 

evaluation are adopted: 

 Bottom-up. In the Bottom-up approach, each EVENTS AD system under test is 

compared against an AD Baseline system or manual driving. 

 Top-down. In the Top-down approach, the EVENTS AD system is assessed against 

some acceptance criteria derived from the SOTIF analysis, in T5.3. 

2.1  Input 

As an input of this work and in order to define the EVENTS set of KPIs and candidate 

test scenarios and/or test cases, three different sources, two from within the EVENTS 

project and one from an external project, have been considered. 

With regards to the KPIs that preceded T6.1: 

• Sub-system KPIs that were proposed from the system requirements per 

experiment and can be found in deliverable D2.1 [1]. 

• Module specific KPIs that were proposed by WP3 & WP4 per experiment based 

on the SoA (Bottom-Up approach) and can be found in deliverables D3.1 [4] & 

D4.1 [5] respectively. 

• Inputs from an external project: Hi-Drive [6] system-level KPIs. 

For those experiments that are defined as end-to-end (the perception layer is 

considered as input to the decision-making layer), the decision-making KPIs are also 

the end-to-end/system KPIs. 

With regards to the test cases (scenarios + acceptance criteria) in EVENTS, which is 

work that will follow T6.1, task T5.3 is considered relevant. Outcomes of T5.3 (see also 

Section 2.4) will be integrated in the subsequent tasks of this WP, in T6.2 (data 

campaigns) and in T6.3 (tests execution and reporting), in order to help all evaluation 
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teams in defining their set of scenarios and if applicable, their test cases when end-to-

end systems are tested. More specifically, outcomes to be utilized are: 

• System and sub-systems safety acceptance criteria per experiment and per 

vehicle (Top-Down approach based on the EVENTS master architecture). 

• Set of triggering conditions that lead to hazardous scenarios per experiment or 

a set of challenging functional scenarios per experiment (this will be based on 

T5.3 HARA analysis based on each experiments’ architecture; this improves the 

reference work done in D2.3 based on the EVENTS generic architecture, as it 

considers the specificities of each experiment). 

2.2  Research Questions 

Each experiment intends to answer the following research questions (RQs): 

 To what extent does the proposed solution improve the perception of the AD 

compared to the baseline/SoA? 

 To what extent does the proposed solution improve the self-assessment of the 

AD compared to the baseline/SoA? 

 To what extent does the proposed solution improve the decision-making of the 

AD compared to the baseline/SoA? 

 If applicable, does the experiment improve robustness by fulfilling the 

minimum safety requirements on a system-level, defined as acceptance criteria 

by the SOTIF analysis? 

2.3  Evaluation Areas & Testing Environments 

The evaluation process will take place in three different areas: 

 Nominal ODD: PIs for assessing the perception and decision-making sub-system 

and the end-to-end system performance in nominal ODD conditions (input 1 in 

Section 2.1). Black-box or a white-box testing can be considered. 

 Assessing the perception, decision-making and end-to-end system reliability in 

boundary ODD conditions, which would include challenging scenarios (e.g., 

darting out pedestrian), challenging ODD conditions (e.g., rain) or long-tail 

(rare) scenarios, the latter of which assumes generated scenarios in simulation. 

 Argue about the AD system safety and robustness by applying safety 

acceptance criteria for selected end-to-end system PIs, provided by task T5.3, 

in known unsafe situations (e.g., darting out pedestrian), exploring, to the 

extent possible, situations on ODD boundary (i.e., unknown unsafe) and verify 

through small-scale real-world testing (handled by WP6). 
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The evaluation of the EVENTS system and sub-systems will occur in three distinct 

environments:  

In-Lab and/or in simulation 

 Real-world data replay in lab environment (more suitable for perception 

modules). 

 Model-in-the-Loop (MiL), in which the SuT would run in a simulation 

environment. 

Real-world 

 Operation in the field, in which the systems would run in a demo vehicle either 

in a test-track or, if the vehicle is permitted to do so, in a public road (suitable 

for partners with end-to-end AV systems). 

 Operation in the field, test-track and/or open road, with the system under test 

in shadow-mode, in which the SuT would run in a demo vehicle, still no AD 

function is controlling the vehicle. (suitable for partners with no AD demo 

vehicle). 

Mixed virtual-real world (hybrid) 

Scenario-in-the-Loop (SciL) and Vehicle-in-the-Loop (ViL), in which said systems would 

run in a hybrid environment interconnecting a demo vehicle and a simulation 

environment and where real-time exchange of information between the two is 

required. 

All EVENTS experiments will evaluate their perception system and four of them will 

evaluate their decision-making and end-to-end system. The data used for the 

evaluation will be gathered from three sources: publicly available datasets, data 

recorded from simulations or hybrid setups and data recording from the EVENTS demo 

vehicles in test tracks or open roads. A summary of the evaluation plan per experiment 

and partner can be found in Chapter 11. 

2.4  Safety Of The Intended Functionality (SOTIF) 

Task 5.3 aims to systematically identify potential hazards related to the SOTIF. A SOTIF 

hazard can arise from both internal and external factors when there is no fault in the 

system. Internal factors to the system include performance limitations, insufficient 

situational awareness or foreseeable misuse by the user (the latter is not tackled in 

EVENTS). External factors include triggering conditions such as challenging weather 

conditions. 
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Based on ISO 21448 [23], SOTIF activities are implemented in three phases, the two of 

the three are also addressed here in EVENTS evaluation process as follows: 

1. Design Phase: Identify SOTIF hazards (critical scenarios) and then derive 

performance requirements on perception layer, decision making layer and 

end-to-end system. This work will be performed in EVENTS T5.3. 

2. Verification phase: This includes technical reviews to verify all derived 

performance requirements are met, the known (unsafe) scenarios are 

covered, i.e., pass-fail criteria are met and the system behaves as expected. 

This is done by considering test cases with a high coverage of relevant 

hazardous scenarios in small scale test track experiments and injection of 

potential triggering events via in the loop testing (e.g., SiL/MiL) of selected 

SOTIF relevant scenarios. This phase will be carried out in WP6, T6.2 and T6.3 

per experiment, taking into account the pass-fail criteria proposed in T5.3. In 

this latter task, pass-fail criteria definition will consider the proposed 

subsystems’ PIs from this deliverable and if needed it will propose new PIs. 

3. Validation phase: The validation phase requires a large amount of data 

collection mileage so it is not applicable to EVENTS project but is required for 

automotive industry production systems. 

Since T6.2 work runs in parallel with WP3 and WP4 for a few months, it is possible that 

the results from T6.2 with respect to SOTIF related assessment, will feed the 

refinement of the WP3 and WP4 modules in an iterative process. During evaluation, a 

valid statistical claim requires that the system under test be stable, and thus any 

iteration on the function design will require repeating any verification tests that may 

have been affected by the change. 

2.5 Template used to gather input from all teams 

In order to define a thorough evaluation plan, each module/AD subsystem developer 

has described their module/subsystem evaluation plan. In order to have consistency 

between the partners’ input, a template was used to gather all the information 

relevant to the evaluation plan. The template required from partners the following 

information: 

• Target evaluation objective (performance, reliability, safety), 

• Evaluation scenarios, 

• Evaluation PIs, 

• Datasets (train, test), and 
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• The baseline showing against which system they are comparing. 

The abovementioned description is presented in Sections 3 to 10, starting from the 

results of WP2, reported in deliverable D2.1 “User and system requirements for 

selected use cases” [1]. 
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 EXP1  
EXP1 is about safe, comfortable and time-efficient automated driving in complex 

urban environment while interacting with VRUs (e.g. pedestrians, cyclists). The 

environment perception, road user motion prediction, motion planning and vehicle 

control will be demonstrated in a single integrated system on-board TUD’s own 

vehicle prototype. The experiment consists of the ego-vehicle driving on a two-lane 

road (i.e., one lane on each side) whereas several VRUs might (or might not) move into 

the vehicle’s path (e.g., crossing, walk longitudinally, swerve), possibly from behind 

occlusions (e.g., parked vehicles). The question is whether to decelerate, accelerate or 

steer away. The experiment is led by TU Delft (TUD). 

In EXP1, TUD’s evaluation plan includes work on their perception layer, on their 

decision-making layer with the perception layer abstracted and on their decision-

making layer with the perception layer present (end-to-end experiment). 

3.1  Perception Layer 

With regards to the perception layer, TUD’s evaluation objective is to assess the 

perception performance in real-world driving scenarios, based on two datasets 

recorded in the USA and Europe, the nuScenes and Zenseact. 

For measuring the perception performance, TUD will use two versions of the average 

precision (AP) metric, i.e., the KITTI [10] and nuScenes [11] definitions. Average 

precision measures the area under the precision-recall curve, and it is the main metric 

used for evaluating 2D and 3D object detection methods. The score is a value between 

0 and 1, where 1 corresponds to a perfect detector (recall of 100% with a precision of 

also 100%). The main difference between the two versions (KITTI and nuScenes) is that 

the KITTI version is Intersection over Union-based, while the nuScenes version is 

distance-based. This means that the KITTI version measures how well the predicted 

bounding boxes overlap with the ground truth bounding box, while the nuScenes 

version measures how close the predicted bounding boxes are with respect to the 

ground truth bounding boxes. 

The results will be compared against two baselines 1. the standard detection model 

of Autoware, which is trained on nuScenes, and 2. the model trained on the recent 

Zenseact dataset [12]. Both baselines are obtained using full supervised training, i.e., 

using labelled data to train the detector. The nuScenes dataset has a LiDAR with only 

32-vertical beams, while the Zenseact dataset has a LiDAR with 128-vertical beams. 

TUD’s vehicle also has a LiDAR with 128-vertical beams. The training data for baseline 

1 comes from Boston/Singapore, and the data for baseline 2 was recorded in Europe. 

As a result, for both baselines, there is a domain shift (data distribution of training 

data is different from the test environment), and there are (small) differences in the 
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sensor characteristics. However, that is the standard for relying on detectors trained 

with supervised learning. 

3.2  Decision-making Layer 

TUD will evaluate the decision-making layer with the perception layer both abstracted 

and present. 

3.2.1 Perception Layer Abstracted 

With the perception layer abstracted, TUD’s evaluation objective is to assess the 

motion planner with decision-making reaching the goal as fast as possible while 

keeping sufficient distance from obstacles. The motion planner will be validated in the 

Autoware planning simulator that is extended with virtual pedestrians. The evaluation 

scenarios will include the ego-vehicle driving on a two-lane road involving VRUs 

entering its path; pedestrians will be spawned in random start locations with random 

directions on a straight section of the road. 

KPIs will be collected over a large number of simulations to compare their statistics. 

The performance of motion planner with decision-making will be measured by the PIs 

shown in Table 1. 

Table 1: Evaluation PIs of the decision-making layer of EXP1 

Evaluation PIs Description 

Minimum Distance to 
Obstacles [m] 

It consists of the minimum distance between the 
vehicle and any of the obstacles (each modelled as 
a set of the discs) minus their respective radius. 
When zero, it indicates that a collision occurred. 

Number of collisions It validates whether any collisions occur in the 
simulation. 

Task Duration [s] It is the time taken for the vehicle to reach its goal. 
Faster motion planning leads to a lower task 
duration. 

Computation time [ms] It should remain below the allocated planning time 
(typically 50-100ms). 

 

The developed planner will be compared against the Autoware planning stack, which 

consists of a behavioral layer and a local planner. Both planning layers consist of 

several different planners that can be activated in different situations based on a 

behavior tree. For obstacle avoidance, a rule-based behavioral layer generates a rough 

trajectory [13]. An Elastic Band (EB) local planner refines the steering to evade 

obstacles without changing the velocity [14]. The main difference between the 

baseline and the proposed planner is that the latter generates and optimizes multiple 

high-level passing behaviors. This allows it to explore multiple locally optimal 
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trajectories and to identify the best. In contrast, the baseline only optimizes the 

steering angle of a single trajectory. 

3.2.2 Perception Layer Present 

With the perception layer present, TUD’s evaluation objective is to assess the end-to-

end performance on a real track, including real-world uncertainties and false positive 

detections. The evaluation scenarios will include the ego-vehicle driving at low speed 

(10-15 km/h) on the test track with multiple VRUs. The pedestrians and cyclists would 

be at a safe distance from the ego-vehicle. The EuroNCAP-certified motion-

synchronized dummy of vulnerable road users dummy (adult or cyclist) would be 

crossing the vehicle path with a high collision risk. 

Since the perception module affects the motion planner's performance, the KPIs 

would be the same for the decision-making layer with the perception layer abstracted 

and present. The default Autoware perception module based on the CenterPoint 

detector [15] will be used for perception; it is trained on nuScenes and internal 

datasets (not publicly available). The default Autoware planning stack, including a 

behavioural layer and a local planner, will be used as baseline. 
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 EXP2 
EXP2 incorporates perception augmentation via safe integration of collective 

perception (CP) info, predictive planning for the control of the platooning in an urban 

environment (T4.1), management of the platooning behavior (T4.2) and design of a 

safe operational model for when an attached vehicle is in the platoon (T4.3). AV 

control takes advantage of augmented perception (inside and outside CAVs’ FOV) 

offered by fusion of cooperative awareness messages (CAM) and collective perception 

messages (CPM) (T3.4 and T3.5) shared by other road users and platoon members. 

EXP2 is led by Tecnalia (TECN) and ICCS also participates. 

EXP2 includes work on the perception and the decision-making layer, so the 

evaluation plan for these two modules is presented below. 

4.1  Perception/Self-assessment Layer 

The evaluation of the collective perception module designed for tasks T3.4 & T3.5 is 

planned in two setups, along different levels of sophistication of the core algorithm. 

Additionally, a study on the sensitivity of the algorithm with respect to the localization 

errors will be also carried out. 

Specifically, the two setups consist in: 

1. CARLA simulations 

• A basic scenario of 3 to 5 agents moving in a roundabout area will be 

devised. A special consideration is given in the generation of the 

environment elements in CARLA in order to create occlusions from the 

perspective of the sensor equipped connected vehicles (e.g., static 

obstacles or vegetation). Additionally, sensor noise level can be 

customized from within CARLA environment. 

• In at least one scenario variation one of the agents is assumed not 

connected and without a perception stack. 

• Each of the other agents (2-4 agents, added incrementally, thus 

gradually increasing complexity) is equipped with the following 

perception stack: 

o GPS and IMU providing measurements on the position and 

orientation of the vehicle. 

o Front RGB camera. 

o Lidar. 
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At each moment of the simulation, both the CARLA ground truth plus the perception 

data from each sensor will be saved, along with the transformation projecting Lidar 

points on the RGB camera image at each time instant. These transformations will be 

used to fuse Lidar and camera data, and provide an estimation of the position of each 

perceived object relative to the ego vehicle. Although this will not provide position 

and orientation of perceived vehicles per se, it will be utilized to extract the occupancy 

state of the grid cells within the ego vehicle’s FoV. The collective perception algorithm 

in increasing levels of sophistication (see below) as presented so far will be used to 

fuse the individual perception data coming from each connected vehicle.  

2. The hybrid setup of experiment 2 

In this case, a json file simulating a Collective Perception Message will be available 

from each connected agent at each time instant of the simulation. The json file will 

provide the following information: 

• Ego FoV angle. Each CCAV’s sensor suite implies a FoV angle for the particular 

CCAV. For example, a single front camera implies that the CCAV’s FoV angle is 

equal to the FoV of the camera. 

• Ego state information. Information of the ego state of the CCAV, specifically: 

o Ego Vehicle Position coordinates in x,y 

o Ego Vehicle Speed vector vx, vy 

o Ego Vehicle Heading (yaw angle) 

• Observed objects information. Information concerning each one of the objects 

perceived by the CCAV, specifically: 

o Position coordinates in x,y 

o Speed vector vx, vy 

o Heading (yaw angle) 

The CPM messages will be used to calculate the FoV of each vehicle and calculate the 

resulting probabilistic occupancy grid. 

In both the above setups, the resulting probabilistic occupancy grid will be compared 

with the occupancy grid constructed directly from the ground truth. This will be 

carried out, both from the ego-CAV perspective and the bird-eye-view scene 

perspective, by calculating the metrics shown in Table 2. PIs will be analyzed per 

scenario over time.  
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Table 2: Evaluation PIs of the perception/self-assessment layer of EXP2 

Evaluation PIs Description 

Global IoU of occupied 
areas [%] 

The Intersection over Union (IoU) between areas 
estimated as occupied (free) by the output of the 
collective perception module and areas actually occupied 
(free) according to the ground truth. The binary 
estimated occupancy state of each cell will be derived 
from the estimated probabilistic state by specified 
probability thresholds. IoU will provide a metric of 
similarity between the sets of estimated as occupied 
(free) and actually occupied (free) grid cells, ranging 
between 0 and 1; 0 indicating disjoint sets, 1 indicating 
equal sets. 

Local IoU of occupied 
areas [%] 

The Intersection over Union (IoU) between areas 
estimated as occupied (free) by the output of the ego-
vehicle perception and areas actually occupied (free) 
according to the ground truth. 

Precision/Recall metrics The estimated probabilistic occupancy grid can be seen 
as a binary classification of each grid cell to “occupied” vs 
“free” via specified threshold probabilities. The resulting 
confusion matrix and precision/recall metrics will provide 
a more detailed evaluation of the algorithm estimations. 

 

An even finer analysis will consider the aforementioned IoU and precision/recall 

metrics but specifically for the boundaries of occupied regions. 

Within the above setups, three different levels of sophistication for the core collective 

perception algorithm will be evaluated. Specifically: 

a. A simple version, taking into account only the occupied/free state of each grid 

cell as perceived by each agent, without taking into account the individual 

perception models and their respective probabilities. 

b. A more sophisticated version, carried out by Bayesian fusion of the perception 

data of each agent, by taking into account the individual perception models 

and their respective probabilities. At each time step, the prior occupancy 

probability for each cell of the grid will be set to 0.5. 

c. This version will be the same like the second version, except that at each time 

step, the prior occupancy probability for each cell of the grid will be set equal 

to the respective probability of the posterior of the previous time step. For 

sufficiently high sampling rates, this is expected to provide a more smooth and 

reliable estimation of the subsequent posterior with better handling of 

instantaneous “ghost (or missed) objects” noise. 
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The overall approach is expected to be sensitive to localization errors of the involved 

agents. To address this, a study on the sensitivity of the algorithm output in terms of 

the metrics described above with respect to the localization errors will be also carried 

out. 

4.2  Decision-making Layer (perception layer present) 

With regards to the decision-making layer of EXP2, the work involves behavioural and 

motion planning, and fail-safe control. 

4.2.1 Behavioural and motion planning 

The target evaluation objective with regards to the behavioural and motion planning 

is to integrate the perception inputs, to generate an appropriate plan and geometry 

to follow while maintaining a safety distance, and to reduce the risk situations to a 

minimum (based on TTC<1.5s). In more detail, the evaluation plan would: 

• Provide an efficient plan for all automated participants in the scene at high 

level (maintain lane, change lane, enter roundabout, etc.), measured in 

successful completion of simulated and hybrid scenarios, and time to finish the 

manoeuvre. 

• Improve, in terms of smoothness and safety, the trajectories for automated 

vehicles, which integrate possible conflicts, and adapt appropriately. These will 

be measured in lateral accelerations and other comfort variables. 

• Target to avoid risk situations in speed planning, measured in TTC and DTC. 

The architecture has a global planner that generates a path that goes on the center of 

the lane, based on the map available. After that, a local planner generates the 

reference trajectory for the controller using the state of the vehicle and the global 

path. The benchmarking of the trajectory would be as follows: 

• Bezier curve: We use two ways of generating the control points needed for 5th 

order curves. 

o Equidistant points: We need 6 points to define 5th order bezier curve. 

Three of them are the vehicle position and two points ahead. The other 

three are composed by the final point of a segment of the global path 

(the center of the lane) and two points above it following a tangent line 

to the path. Distance between consecutive points will be defined in 

three different ways: i. Static, ii. Ponderation of the speed and of the 

lateral acceleration, and iii. Sum of ponderated speed and acceleration. 
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o Optimization of curvature: The method used in the Autoware stack that 

forms an optimization problem that minimizes the square of the 

derivate of the curvature. 

• Splines: Using a segment of the global path (the center of the lane) we are 

going to use 3rd, 4th and 5th order splines with weighted smoothing. 

• Model based optimization: Just like in the Model based Predictive Control we 

use a kinematic model with lane boundary constrains to generate a curve by 

minimizing the position error between the trajectory and the center path. 

The evaluation scenarios would be using Carla framework to test against current 

baseline. The evaluations PIs are shown in Table 3. 

Table 3: Evaluation PIs for the behavioural and motion planning module of EXP2 

Evaluation PIs Description 

Max lateral acceleration [m/s2] The max lateral acceleration of the ego vehicle 
(Lateral behaviour) 

Average lateral acceleration 
[m/s2] 

The average lateral acceleration of the ego vehicle 
(Lateral behaviour) 

Average lateral error to 
reference trajectory 

The average lateral error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Average angular error to 
reference trajectory 

The average angular error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Average lateral error to center 
line 

The average lateral error to the center of the line 
(Lateral and Heading Error) 

Average angular error to center 
line 

The average angular error to the center of the line 
(Lateral and Heading Error) 

Max lateral error to reference 
trajectory 

The maximum lateral error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Max angular error to reference 
trajectory 

The maximum angular error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Max lateral error to center line The maximum lateral error to the center of the line 
(Lateral and Heading Error) 

Max angular error to center 
line 

The maximum angular error to the center of the 
line (Lateral and Heading Error) 

Average difference of 
reference trajectory to center 
line [m] 

The average difference between the reference 
trajectory generated by the motion planning 
module and the center of the line (Geometry) 

Max difference of reference 
trajectory to center line [m] 

The maximum difference between the reference 
trajectory generated by the motion planning 
module and the center of the line (Geometry) 
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Normalized max curvature [m] The normalized maximum curvature of the 
reference trajectory generated by the motion 
planning module (Geometry) 

Normalized average curvature 
[m] 

The normalized average curvature of the 
reference trajectory generated by the motion 
planning module (Geometry) 

Normalized max curvature 
difference to center line [m] 

The normalized maximum curvature difference 
between the reference trajectory generated by 
the motion planning module and the center of 
the line (Geometry) 

Normalized average curvature 
difference to center line [m] 

The normalized average curvature difference 
between the trajectory generated by the motion 
planning module and the center of the line 
(Geometry) 

Average computation time 
[ms] 

The average computation time 

Max computation time[ms] The maximum computation time 

Success rate [%] The last vehicle exits the roundabout and there 
have not been any collisions (Decision Making) 

 

Comparisons in decision-making and behavioural solutions are complex since its 

performance is heavily linked to the architecture in place. Nonetheless, EXP2 will focus 

on comparing the motion planning module, with the KPIs outlined above (Lateral 

Behaviour, Geometry, and Lateral and Heading Error) with the current SoA. Part of the 

challenge of the task lies in the comprehensive approach taken into the efforts to 

integrate several modules in WP4, and closely tied with different modules from WP3. 

In simulations the performance of the vehicle and geometry will also be closely linked 

with the selection of the controller in place, so this is a variable to control. 

4.2.2 Fail-safe Control 

The objective is to evaluate a controller solution tightly integrated with motion 

planning task, with an additional layer for possible failure scenarios, and specifically 

test for an improved coverage for Model Predictive Control (MPC) failure to converge 

and the controller performance. 

The evaluation scenarios would be using Carla framework to test against current 

baseline without fail-safe controller. A failure will be induced directly into the 

architecture, triggering the behaviour to change controllers, in different stages of the 

experiment run. The evaluations PIs are shown in Table 4. 

Table 4: Evaluation PIs for the fail-safe module of EXP2 

Evaluation PIs Description 
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Maximum Control Error in 
normal mode 

The maximum control error when the ego vehicle 
is in normal mode 

Maximum Control Error in mode 
transition 

The maximum control error when the ego vehicle 
transitions from normal to degraded mode 

Average Control Error in normal 
mode 

The average control error when the ego vehicle 
is in normal mode 

Average Control Error in mode 
transition (normal to degraded) 

The average control error when the ego vehicle 
transitions from normal to degraded mode 

Time to stable conditions after 
non-converging MPC [ms] 

The time required to establish stable conditions 
after non-converging MPC 

 

Tecnalia has previously worked on failure-tolerant architectures, with a focus on the 

decision stage [17]. The scope of the work was the execution of a fallback manoeuvre 

after the event of a GNSS failure. In this previous work, the fallback mechanism was 

the compute of a degraded localization and the generation of a safe trajectory. The 

motion control module was based on an MPC that executed the planned trajectory. In 

this project, the aim is to address the additional issue of an MPC failing to converge.  
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 EXP3 (Perception only) 
EXP3 is concerned with safe automated driving in a complex urban environment with 

occlusion, to demonstrate the integration of reliability assessment outputs of 

environment state estimation (onboard self-assessment methods) and V2X data into 

an onboard perception system. The experiment will be conducted both in a virtual and 

a real environment. The former will be simulation-based, and it will be primarily 

concerned with developing a self-assessment layer for the perception data (T3.5) 

along with complementary V2X data (T3.4). The latter will be realized in UULM’s 

vehicle, with safety drivers/marshals to account for the prototypical status of the 

developed system, and in UULM’s V2X infrastructure pilot site, where the automated 

ego vehicle will face objects and (artificial) error/degradation in one of the 

sensors/V2X. EXP3 is led by the University of ULM (UULM). 

In EXP3, UULM’s plan is to evaluate the self-assessment (SA) module of the tracking. 

The target evaluation objective is the detection of certain errors and assumptions 

violations injected into the tracking algorithm. These are among other: 

• Increased number of clutter detections (Violations of the clutter assumptions 

in tracking). 

• Increased number of missed detections (Violations of the missed detections 

modelling in tracking). 

• Increased measurement noise of the detections (Violations of the 

measurement noise modelling). 

• Ambiguous data association decision in the tracking algorithm (caused by 

ambiguous data association situations. 

The evaluation scenarios pertain to both simulation and real-world, as follows: 

• Simulation: Monte-Carlo Runs with injected errors from above. 

• Real-World: Analyse KITTI sequences towards tracking assumption violations 

(especially ambiguous data association situations). 

The evaluations PIs are shown in Table 5. 

Table 5: Evaluation PIs of the self-assessment module of EXP3 

Evaluation PIs Description 

Reliability Error detection rate obtained by Monte-Carlo simulation runs 

Performance [ms] Time from error is injected to error is detected in the SA 
module 

 

The KITTI dataset is used for analysing the real-world data effects for the SA module 

(e.g., ambiguous data association situations). 
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With regards to a baseline, there are currently no other comprehensive SA modules 

for tracking algorithms to compare in the State-of-the-Art literature. However, the SA 

module can be compared to one specific consistency test typically used in tracking, 

which is the normalized innovation squared (NIS) and a multi-target variant the multi-

target NIS (MNIS). In simulations with available ground truth, the SA module can also 

be compared with ground truth evaluation metrics as the GOSPA [19] or the RMSE 

error of the track estimates. 
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 EXP4 
EXP4 is an end-to-end experiment starting with the precise vehicle localization, by 

defining a semantic representation of the environment (T3.2), and the motion 

prediction of dynamic objects in the scene (T3.3). The localization of the ego-vehicle 

will be further enhanced by using V2X information (CAM, CPM and SPAT messages, 

optional, if available), thus increasing the reliability of its position in case of a failure 

or sensor blockage (T3.4). Particularly in the context of roadworks, unmarked lanes 

and narrow roads, the ego-vehicle performs a self-assessment by deciding whether to 

trust its perception system (T3.5). EXP4 is led by Hitachi (HIT-FR & HIT-UK) and Tecnalia 

(TECN), CRF and WMG also participate. 

EXP4’s evaluation plan includes work on both the perception layer and decision-

making layer. 

6.1  Perception Layer 

With regards to the perception layer, the target evaluation objective is the 

performance of the perception module, tested in a scenario in which a two-lane road 

has only one lane available due to roadwork bollard in the middle of the road. The 

datasets used for the evaluation involve both public datasets (Zod, Coco) as well as 

collected data from public roads by HIT. 

The evaluation PIs along with their respective baselines are shown in Table 6. 

Table 6: Evaluation PIs of the perception layer of EXP4 

Evaluation PIs Description 

Mean average precision Camera based 2D object detection (Zod & 
Coco datasets) 

IoU of drivable road segmentation The intersection of union of a drivable road 
segmentation extracted from an HD map 

Distance error Lane boundary estimation based on 
roadwork bollard (Own baseline defined from 
the collected data) 

 

6.2  Decision-making Layer (perception layer present) 

With regards to the decision-making layer of EXP4, the work involves behavioral and 

motion planning, and fail-safe control. The methodology used for the evaluation is 

almost identical to the one described in EXP2 but for the ease of readability of the 

document, it is provided again in the following sections. 

6.2.1 Behavioural and motion planning 
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The target evaluation objective with regards to the behavioural and motion planning 

is to integrate the perception inputs, to generate and appropriate plan and geometry 

to follow while maintaining a safety distance, and to reduce the risk situations to a 

minimum (based on TTC<1.5s). In more detail, the evaluation plan would: 

• Provide an efficient plan for all automated participants in the scene at high 

level (maintain lane, change lane, enter roundabout, etc), measured in 

successful completion of simulated and hybrid scenarios, and time to finish the 

manoeuvre. 

• Improve, in terms of smoothness and safety, the trajectories for automated 

vehicles, which integrate possible conflicts, and adapt appropriately. These will 

be measured in lateral accelerations and other comfort variables. 

• Target to avoid risk situations in speed planning, measured in time to collision 

(TTC) and distance to collision (DTC).  

The evaluations PIs are shown in Table 7. 

Table 7: Evaluation PIs for the behavioural and motion planning module of EXP4 

Evaluation PIs Description 

Max lateral acceleration [m/s2] The max lateral acceleration of the ego vehicle 
(Lateral behaviour) 

Average lateral acceleration 
[m/s2] 

The average lateral acceleration of the ego vehicle 
(Lateral behaviour) 

Average lateral error to 
reference trajectory 

The average lateral error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Average angular error to 
reference trajectory 

The average angular error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Average lateral error to center 
line 

The average lateral error to the center of the line 
(Lateral and Heading Error) 

Average angular error to center 
line 

The average angular error to the center of the line 
(Lateral and Heading Error) 

Max lateral error to reference 
trajectory 

The maximum lateral error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Max angular error to reference 
trajectory 

The maximum angular error to the reference 
trajectory generated by the motion planning 
module (Lateral and Heading Error) 

Max lateral error to center line The maximum lateral error to the center of the line 
(Lateral and Heading Error) 

Max angular error to center 
line 

The maximum angular error to the center of the 
line (Lateral and Heading Error) 
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Average difference of 
reference trajectory to center 
line [m] 

The average difference between the reference 
trajectory generated by the motion planning 
module and the center of the line (Geometry) 

Max difference of reference 
trajectory to center line [m] 

The maximum difference between the reference 
trajectory generated by the motion planning 
module and the center of the line (Geometry) 

Normalized max curvature [m] The normalized maximum curvature of the 
reference trajectory generated by the motion 
planning module (Geometry) 

Normalized average curvature 
[m] 

The normalized average curvature of the 
reference trajectory generated by the motion 
planning module (Geometry) 

Normalized max curvature 
difference to center line [m] 

The normalized maximum curvature difference 
between the reference trajectory generated by 
the motion planning module and the center of 
the line (Geometry) 

Normalized average curvature 
difference to center line [m] 

The normalized average curvature difference 
between the trajectory generated by the motion 
planning module and the center of the line 
(Geometry) 

Average computation time 
[ms] 

The average computation time 

Max computation time[ms] The maximum computation time 

Success rate [%] The last vehicle exits the roundabout and there 
have not been any collisions (Decision Making) 

 

Comparisons in decision-making and behavioural solutions are complex since its 

performance is heavily linked to the architecture in place. Nonetheless, EXP4 will focus 

on comparing the motion planning module, with the KPIs outlined above (Lateral 

Behaviour, Geometry, and Lateral and Heading Error) with the current SoA. Part of the 

challenge of the task lies in the comprehensive approach taken into the efforts to 

integrate several modules in WP4, and closely tied with different modules from WP3. 

In simulations the performance of the vehicle and geometry will also be closely linked 

with the selection of the controller in place, so this is a variable to control. 

6.2.2 Fail-safe Control 

The objective is to evaluate a controller solution tightly integrated with motion 

planning task, with an additional layer for possible failure scenarios, and specifically 

test for an improved coverage for MPC failure to converge and the controller 

performance. The evaluations PIs are shown in Table 8. 

Table 8: Evaluation PIs for the fail-safe module of EXP4 

PI Category Evaluation PIs 
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Error PI 

Maximum Control Error in normal mode 

Maximum Control Error in mode transition (normal to degraded) 

Average Control Error in normal mode 

Average Control Error in mode transition (normal to degraded) 

Time PI Time to stable conditions after non-converging MPC [ms] 

 

Tecnalia has previously worked on failure-tolerant architectures, with a focus on the 

decision stage [17]. The scope of the work was the execution of a fallback manoeuvre 

after the event of a GNSS failure. In this previous work, the fallback mechanism was 

the compute of a degraded localization and the generation of a safe trajectory. The 

motion control module was based on an MPC that executed the planned trajectory. In 

this project, the aim is to address the additional issue of an MPC failing to converge. 

  



 D6.1: Experimental procedures and evaluation methods 

©EVENTS Consortium 2022-2025                                                                                                           Page 33 of 50 

 

 EXP5 (Perception only) 
EXP5 is like EXP4 with two main differences. The first is that there is not self-

assessment (T3.5) of the ego-vehicle. The second difference is that the motion 

planning involves path and speed planning as well as control of the different highway 

entering experiments. EXP5 is led by Hitachi (HIT-FR & HIT-UK) and Tecnalia (TECN), 

and CRF also participate. 

In EXP5, the target evaluation objective is to evaluate the performance of the motion 

prediction solution against the SoA and against the ground truth. 

The scenarios to evaluate the module would be performed in a hybrid setup in which 

HIT provides the detection and TECN assesses the solution with real-world data. The 

datasets Argoverse 1 and V2V4Real have been used to test and train the current 

implementation of the motion prediction module. The evaluations PIs that will be used 

are shown in Table 9. 

Table 9: Evaluation PIs for the perception layer of EXP5 

Evaluation PIs Description 

minADE (Minimum Average 
Displacement Error) [m] 

The average distance between the best 
forecasted trajectory and the ground truth, 
compared against map-less SoA solutions. 

minFDE (Minimum Final 
Displacement Error) [m] 

The distance between the endpoint of the best 
forecasted trajectory and the ground truth, 
compared against map-less SoA solutions. 

MR (Miss Rate) [%] The number of scenarios where none of the 
forecasted trajectories are within 2 meters of 
ground truth according to endpoint error. 

brier-minADE (Brier minimum 
Average Displacement Error) [m] 

Similar to minADE with an added probability of 
the best forecasted trajectory. 

brier-minFDE (Brier minimum 
Final Displacement Error) [m] 

Similar to minFDE with an added probability of 
the best forecasted trajectory. 
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 EXP6 (Perception only) 
EXP6 concerns the sensing of small objects and semantic representation of these 

objects (relative position, height, object velocity, over-drivability and estimation of 

time to collision) within diverse weather conditions where the object might not be 

clearly visible to the human eye and a critical decision on the vehicle behaviors shall 

be taken to either avoid a potential frontal collision if the object is not over-drivable 

by braking or avoid a potential rear collision with other vehicles driving behind if the 

object is over-drivable due to unnecessary braking. EXP6 is led by APTIV (APTIV-DE & 

APTIV-FR). 

The evaluation of EXP6’s perception algorithm will be done using real test data 

collected on a test track and using simulations. 

On the test track, data for different objects recorded at different vehicle approach 

speeds will be collected. 

Additionally, simulations will be used to evaluate our perception system for a wider 

range of variations in vehicle states and object dimensions and pose. 

KPIs with goal values that ensure safety and comfort will be used to evaluate our 

perception system. The goal values will be derived as part of task T5.3. 

The confusion matrix, shown in Table 10, will be used to differentiate between true 

positive predictions (TP), false position predictions (FP), false negative predictions (FN) 

and true negative predictions (TN) made by the perception system. 

Table 10: Confusion matrix 

 
 Predicted 

  Overdriveable Non-driveable 

Actual Overdriveable TN FP 

Non-driveable FN TP 

 

The perception level KPIs, shown in Table 11, will be evaluated on the real test track 

data and on simulation data. 

Table 11: Evaluation PIs of the perception layer of EXP6 

Evaluation PIs Description 

Distance to debris [m] Distance to the object at the timestamp when we have 
the same prediction class for at least 0.25 s  

TTC to debris [m] TTC to the object at the timestamp when we have the 
same prediction class for at least 0.25 s 
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Mean accuracy of 
longitudinal position of 
detected object [m] 

The mean longitudinal position error value must be 
within the desired range. The closer to 0 the better. 
The error is computed by comparing the object cluster 
position provided by the perception system compared 
to the ground truth position.  

Upper bound accuracy 
of longitudinal position 
of detected object [m] 

The mean longitudinal position error value plus 3 
standard deviations of the error must be less than the 
goal value. The closer to zero the better.  

Lower bound accuracy 
of longitudinal position 
of detected object [m] 

The mean longitudinal position error value minus 3 
standard deviations of the error must be greater than 
the goal value. The closer to zero the better. 

Mean accuracy of 
lateral position of 
detected object [m] 

The mean lateral position error value must be within 
the desired range. The closer to 0 the better.  

Upper bound accuracy 
of lateral position of 
detected object [m] 

The mean lateral position error value plus 3 standard 
deviations of the error must be less than the goal value. 
The closer to zero the better. 

Lower bound accuracy 
of lateral position of 
detected object [m] 

The mean lateral position error value minus 3 standard 
deviations of the error must be greater than the goal 
value. The closer to zero the better. 

Recall/True Positive 
Rate 

This is the ratio between TP predictions and the actual 
ground truth positive class.  
 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Precision/Positive 
Predictive Value (PPV) 

This is the ratio between the TP predictions and all the 
predicted positive class. 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

F1-score This is the harmonic mean between the precision and 
recall. 
 

F1score = 2
𝑇𝑃𝑅 ∗ 𝑃𝑃𝑉

𝑇𝑃𝑅 + 𝑃𝑃𝑉
 

 

True Negative rate This is the ratio between TN predictions and the actual 
ground truth negative class. 
 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Short range 
consecutive FP 
predictions 

The median number of consecutive FP predictions 
when the object is less than 50 m away from the 
vehicle. 
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Long Range 
consecutive FP 
predictions 

The median number of consecutive FP predictions 
when the object is less than 250 m away from the 
vehicle. 

Short range 
consecutive FN 
predictions 

The median number of consecutive FN predictions 
when the object is less than 50 m away from the 
vehicle. 

Long Range 
consecutive FN 
predictions 

The median number of consecutive FN predictions 
when the object is less than 250 m away from the 
vehicle. 

Perception latency The time difference between the moment the object is 
sensed by the perception system (object radar 
detection available) and the moment in which a stable 
classification is outputted. Stable classification implies 
that the output class is constant for 0.25 s. 

 

The above defined KPIs have a direct influence on the end to end system KPIs. The 

end to end system KPIs, shown in Table 12, will not be tested since the DM module 

is not being addressed in this experiment, hence are only being provided for 

completeness sake. 

Table 12: End-to-end KPIs 

Evaluation PIs Description 

Maximum deceleration 
[m/s2] 

Maximum deceleration required to come to stop for 
non-driveable object or to slow down for an 
overdriveable object 

Smallest longitudinal 
distance to non-
driveable object [m] 

Smallest longitudinal distance to non-driveable 
object after stopping in lane 

Smallest longitudinal 
distance to an 
overdriveable object [m] 

The smallest distance along the direction of the travel 
of the ego vehicle with respect to the closest 
overdriveable object in the ego lane shall be 0 m, as 
the ego vehicle is expected to drive over the object. 

Ego vehicle velocity 
when driving over an 
overdriveable object 
[m/s] 

The ego vehicle velocity when driving over an 
overdriveable object shall be between 0.9* goal 
value and the goal value. 
 

Ego vehicle velocity in 
case of collision with 
non-driveable object 
[m/s] 

The relative velocity with respect to the non-
driveable object in case of collision should be less 
than the safety goal value. 
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 EXP7 
This experiment focuses on the development of an integrity monitoring mechanism 

for estimating the distance to the leading vehicle in urban and highway environments 

under adverse operational domain conditions. The mechanism should reliably indicate 

the point in time when the relative localization of the ego-vehicle with respect to the 

leading vehicle must not be trusted and/or the object detection and tracking becomes 

unreliable. Another objective (not related with the self-assessment objective) is to 

study the effects of adverse weather conditions on a perception module performing 

other vehicles’ behaviour prediction. EXP7 is led by WMG and ICCS also participates. 

9.1  Perception Layer 

EXP7 consists of only a perception layer, which in turn incorporates a self-assessment 

layer and a prediction module. 

9.1.1 Perception/Self-assessment layer 

The perception system in EXP7 comprises camera-based and lidar-based object 

detection. The output of the developed self-assessment system for perception is 

binary classification (Error vs No-error) determining whether to trust the current 

perception frame or not. For camera-based detection, a perception error is declared 

when the mAP is estimated to be less than 0.5, while for lidar-based 3D object 

detection, a perception error is declared when at least one object (vehicle or 

pedestrian) in the input frame is not detected. For performance evaluation lidar data 

will be collected in public roads. In addition, public datasets will be used to assess the 

performance of the self-assessment mechanism both for camera-based and lidar-

based object detection, as follows: 

• Target evaluation objective: Evaluating the performance of a DNN-based self-

assessment system for camera-based 2D object detection and lidar-based 3D 

object detection. For the object detection tasks YOLOv8 (2D) and Centrepoint 

(3D) are used. 

• Evaluation scenarios: Data collection (lidar point clouds) in public roads during: 

(i) Urban driving under normal weather as well as (ii) Motorway driving under 

normal and adverse weather conditions. 

• Datasets: The introspection system has been trained using: (i) YOLOv8 in KITTI 

and BDD for 2D object detection and (ii) Centrepoint in NuScenes for 3D object 

detection. Note that the NuScenes dataset contains inputs under adverse 

weather too. For performance evaluation using lidar data from public roads, a 

small labelling task is required, i.e., generating binary labels indicating whether 
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a pedestrian or a vehicle is missed in the input frame. To facilitate labelling, 

camera data is also collected at the same time. 

• Baseline: The developed introspection system has been trained using: (i) 

activation maps associated with mAP (2D introspection), and (ii) activation 

maps associated with at least one missing object (3D introspection). Only the 

vehicle and pedestrian classes are considered by the introspection system. The 

baseline introspection system for comparison uses some statistical features of 

the activation maps instead of the full activation map. 

Regarding the self-assessment of the distance-estimation to the leading vehicle, the 

distance to the leading vehicle, in EXP7, is estimated using a lidar. Centrepoint is used 

for object detection and the closest object in terms of longitudinal distance is declared 

to be the leading vehicle. Objects in the same lane and within a specified maximum 

longitudinal distance to the ego vehicle are only considered. Under adverse weather, 

the performance of the lidar detections can severely degrade and a radar sensor is 

used to obtain the ground truth distance. The self-assessment mechanism is trained 

based on the activation maps and ground truth data collected using a radar to predict 

whether the distance estimation error to the leading vehicle is significant or not. 

Significance depends on the application, i.e., urban or motorway driving. The distance 

estimation error is calculated based on the longitudinal distance of the detected and 

ground truth bounding box centers of the lead vehicle.  If the lead vehicle is missed 

the distance error equals the distance between the ground truth and the maximum 

longitudinal distance for lidar detection. If a ghost lead vehicle is detected the distance 

error equals the distance between the prediction and the maximum longitudinal 

distance for lidar detection. Self-assessment of the distance estimation to the leading 

vehicle is part of the ego vehicle’s ACC. 

• Target evaluation objective: Evaluating the performance of a DNN-based self-

assessment system of lidar-based lead vehicle detection and distance 

estimation to the Ego vehicle. For lead vehicle detection Centrepoint (3D) is 

used. 

• Evaluation scenarios: Data collection for: (i) urban driving under normal 

weather as well as (ii) motorway driving under normal and adverse weather 

conditions. 

• Datasets (train, test): The introspection system has been trained using 

Centrepoint in NuScenes including adverse weather. For testing data collection 

is carried out. For the ground truth of the distance to the leading vehicle, radar 

data is used. 

• Baseline (to which system are you comparing against): Not yet decided. 
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Regarding the integrity monitoring for GNSS-based localisation: 

• Target evaluation objective: Evaluating the performance of an integrity 

monitoring mechanism for GNSS-based localization. The mechanism leverages 

neural networks to calculate the horizontal protection level, which is an upper 

bound to the horizontal positioning error. 

• Evaluation scenarios: Data collection at fixed locations while being static. The 

average of the best position signals across a time interval shall be considered 

as the ground truth and the position errors are calculated accordingly. 

• Datasets (train, test): Not yet decided. 

• Baseline: Receiver-autonomous integrity monitoring (RAIM) using weighted 

least-squares estimation. 

Evaluation PIs Description 

Frame-level error performance Assuming that frame-level errors are 
associated with the positive class of the 
self-assessment mechanism, its 
performance is evaluated using class 
specific recall values and the AUROC (the 
higher the better). The inference time is 
also measured. 

Binary classification [True or False] Binary classification whether the 
estimated distance to the leading vehicle 
can be trusted or not. The inference time 
is also measured 

Horizontal protection level [m] Evaluating the integrity monitoring for 
GNSS-based localisation 

 

9.1.2  Prediction module 

ICCS will contribute to the maneuver and trajectory prediction task (assuming given 

object bounding boxes). The scenarios evaluated are per EXP7 UCs (highways) and 

Open Road (runtime) evaluation is considered. 

In accordance with KPIs defined previously in D2.1, D3.1, D4.1 and with the current 

State-of-the-art literature, the evaluation KPIs for T6.1 are reported and described in 

Table 13 and Table 14. 

Table 13: Maneuver prediction KPIs and expected performances after module completion 

Evaluation PIs Description Formula 
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Classification 
Accuracy 
(Acc.) 

Percentage Value of 
correctly predicted 
maneuvers (online) of 
each non-ego vehicles 
during the prediction 
horizon, averaged per 
time horizon (weights), 
scene agents 

 

1

𝑁𝑥𝑇
∑ ∑ 𝑤𝑡

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑃

𝑡=𝑇−1

𝑡=0

𝑖=𝑁−1

𝑖=0

 

 
𝑤𝑡 : weighting scheme, 𝑤 =
[0.44,0.33,0.22] 
P: positive class (Lane Change Right) 
N: negative class (Lane Change Left) 

ROAUC Area under receiver 
operating curve, 
averaged over time and 
agents 

1

𝑁𝑥𝑇
∑ ∑ ∫ 𝑇𝑃𝑅 𝑑𝐹𝑃𝑅

1

0

𝑡=𝑇−1

𝑡=0

𝑖=𝑁−1

𝑖=0

 

 
TPR: True Positive Rate 
FPR: False Positive Rate 

Precision Precision averaged over 
time, agents and 
classes 

1

𝑁𝑥𝑇
∑ ∑ 𝑤𝑡

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑡=𝑇−1

𝑡=0

𝑖=𝑁−1

𝑖=0

 

True 
Negative 
Rate 

TNR averaged over 
time, agents and 
classes 

1

𝑁𝑥𝑇
∑ ∑ 𝑤𝑡

𝑇𝑁

𝑇𝑁 + 𝐹𝑁

𝑡=𝑇−1

𝑡=0

𝑖=𝑁−1

𝑖=0

 

 

Table 14: Trajectory prediction KPIs and expected performances after module completion 

Evaluation PIs Description Formula 

Minimum 
Average 
Displacement 
Error 
(minADE) 

Minimum 
displacement error 
of each non-ego 
vehicle during the 
prediction horizon, 
averaged per time 
(weights) scene 
agents and weights 

 

1

NxTxK
∑ ∑ ∑ wt ∗ (xi,t − xi,t̂)

2
t=T−1

t=0

i=N−1

i=0

k=K−1

k=0

 

 
xi,t : Logged trajectory (2D) ground truth 

x̂i,t: Predicted 2D waypoint  

Minimum 
Final 
Displacement 
Error 
(minFDE) 

Final displacement 
error of each non-
ego vehicle during 
the prediction 
horizon, averaged 
per time (weights) 
and scene agents 

1

NxTxK
∑ ∑ wt ∗ (xi,𝑇 − xi,𝑇̂)

2
i=N−1

i=0

k=K−1

k=0

 

Minimum 
Average 
Displacement 
Error over 
top k scored 
trajectories 
(minADEk) 

Minimum 
displacement error 
of each non-ego 
vehicle during the 
prediction horizon, 
averaged per time 
(weights), scene 

𝑚𝑖𝑛
𝑘∗∈1,…𝐾

1

NxT
∑ ∑ wt ∗ (xi,t,k∗ − xi,t,k∗̂)

2
t=T−1

t=0

i=N−1

i=0

 

 
 

𝑘∗ = argma𝑥𝐼⊂𝐾,|𝐼|=𝑁𝑃(S(𝑘)) 
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agents and over 
top k best 
generated 
trajectories 
(multimodality) 

P(S): Power set of S 
S(k): Planning-aware scoring function of 
trajectory k 

Minimum 
Average 
Displacement 
Error in 
Dynamic 
evaluation 
(Dynamic 
minADE) 

Minimum average 
Displacement Error 
of each non-ego 
vehicle during the 
prediction horizon, 
averaged over time 
and scene agents, 
in dynamic 
evaluation 
(simulated motion 
model of non-ego 
agents) 

𝑚𝑖𝑛
𝑘∗∈1,…𝐾

1

NxT
∑ ∑ wt ∗ (xi,t,k∗ − xi,t,k∗

𝑠𝑖𝑚 )
2

t=T−1

t=0

i=N−1

i=0

 

𝑘∗ = argma𝑥𝐼⊂𝐾,|𝐼|=𝑁𝑃(S(𝑘)) 

 

The model baselines for EXP7 were considered in a top-down approach, following 

the recent advancements in the manoeuvre prediction field, as shown in Table 15. 

Table 15: Model's baselines 

Method Description 

CNN  CNN on preprocessed RGB Ego-view images augmented 
with context and history [7] 

CNN Encoder + 
LSTM 

CNN encoder (ResNet) and LSTM for prediction [8] 

Bayesian Network  Bayesian network for lane change prediction 

Interaction Network GNN on vectorized scene and agent features, pretrained on 
VectorNet [9] 

 

The developed module is to be evaluated both in real and simulation datasets, as 

shown in Table 16. 

Table 16: Simulation and real-world datasets for EXP7 

Dataset Description Type 

PREVENTION RGB Video of Ego View 
highway scenes 

Real 

BDD100k RGB Video of Ego View in 
highway, urban scenes in US  

Real 

KITTI Grayscale stereo video of Ego 
View in highway, urban scenes 

Real 
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Synthetic 
simulation dataset 
(ICCS) 

Highway multi-agent driving 
scenes developed in CARLA by 
ICCS 

Simulation 
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 EXP8 
The low atmospheric visibility in adverse weather conditions like fog, snow, and rain 

reduces the maximum viewing distance of LiDAR sensors. This in turn decreases the 

object detection and localization performance and cause safety hazards. Weather 

conditions have effect on sensing and therefore on perception and localization of 

automated driving system. Use case provides possibility to evaluate the on-board 

visibility-based localization performance estimate. Safe vehicle control is necessary in 

case the weather conditions worsen and fail-safe behavior in case of exiting the ODD 

completely due to extreme weather. EXP8 is led by TUD and Perciv.AI (PERCIV) also 

participates. 

In EXP8, the evaluation plan includes work on the perception layer and on the 

decision-making layer, performed by PERCIV and TUD respectively. 

10.1 Perception Layer 

With regards to the perception layer, a detailed evaluation of two key modules will be 

conducted, a radar point cloud segmentation and a radar-based ego-motion 

estimation, developed in WP3 (T3.2). The evaluation will focus on the reliability and 

accuracy of these modules to ensure they are dependable for subsequent 

development phases. 

The primary evaluation objective is to validate the reliability of the perception 

modules to serve as a trustworthy source for subsequent development stages. The 

evaluation will test the modules' performance in real-world conditions using PERCIV's 

proprietary dataset, which encompasses real-world driving conditions. This dataset 

includes a variety of environmental and traffic scenarios, providing a comprehensive 

base for evaluation. 

Each module will be compared to specific baselines to underscore the advancements 

made by PERCIV, as follows: 

• Radar Point Cloud Segmentation: 

o Ghost Target vs. Real Radar Targets: Performance will be compared to 

the method proposed by Chamseddine et al., "Ghost target detection 

in 3D radar data using point cloud based deep neural network." 

o Moving vs. Static Targets: We will benchmark against statistical 

methods for detecting moving targets, such as those discussed by Palffy 

et al. in "Detecting Darting Out Pedestrians with Occlusion Aware 

Sensor Fusion of Radar and Stereo Camera." 

o Road User Segmentation: This will be evaluated against our state-of-

the-art deep learning-based top-down radar object detection 
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approach, which estimates bounding boxes for each object. We will use 

these boxes to “paint” the radar points with class information. 

• Radar-Based Ego-Motion Estimation: This module's performance will be 

benchmarked against camera-based odometry systems, demonstrating radar's 

effectiveness even in poor visibility conditions. 

The evaluation will utilize scenarios from PERCIV’s real-world dataset to ensure the 

testing environment reflects typical operational conditions and the evaluation PIs are 

shown in Table 17. 

Table 17: Evaluation PIs of the perception layer of EXP8 

Area Evaluation PIs 

Radar Point Cloud Segmentation The Intersection over Union (IoU) will be 
used to quantify the accuracy of 
segmentations [%]. 

Radar-Based Ego-Motion Estimation Metrics will include drift over time and 
average mean square error, assessing 
the precision of the module's motion 
estimations. 

 

10.2 Decision-Making Layer 

With regards to the decision-making layer, the target evaluation objective is to assess 

the motion planner with decision-making to avoid collision and keep a vehicle stable. 

TUD will validate the motion planner using Monte-Carlo simulations with high-fidelity 

multibody software IPG/CarMaker. The evaluation scenario includes TUD’s demo 

vehicle performing an emergency evasive manoeuvre on a slippery road under rain 

conditions to avoid a low-speed dynamic obstacle. 

The evaluations PIs that are going to be used to assess the performance of motion 

planner with decision-making are shown in Table 18. 

Table 18: Evaluation PIs of the decision-making layer of EXP8 

Evaluation PIs Description 

Vehicle-to-Obstacle distance [m] It is a Euclidian distance between the ego-
vehicle and the obstacle. 

Time to Collision (TTC) [ms] Essential to evaluate the decision-making logic 

Time to Brake (TTB) [ms] Essential to evaluate the decision-making logic 

Time to Steer (TTS) [ms] Essential to evaluate the decision-making logic 

Vehicle sideslip angle [degrees] The angle between the vehicle centre line and 
the vehicle velocity vector. The absolute 
sideslip angle is small and below 5 degrees in 
stable driving situations 
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Computation time [ms] It should remain below the allocated planning 
time (below 50 ms) 

 

The developed planner will be compared against a SoA approach based on nonlinear 

Model Predictive Control. It combines motion planning, path tracking and vehicle 

stability into a single controller. The prediction model is based on a nonlinear single-

track and a Fiala tyre model [16]. The obstacles and the vehicle are represented as 

circles, so the distance between the vehicle-to-obstacle is constantly monitored, and 

the controller uses it to prioritize obstacle avoidance rather than path tracking in an 

emergency. The prediction model kinematics is formulated using a Frenet reference 

system [22], so the vehicle-to-obstacle distance is also measured using this coordinate 

framework.  
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 Summary & Conclusion 
This Deliverable (D6.1), which is associated with task T6.1, describes the methodology 

and scope for the evaluation of the EVENTS experiments. The aim of the 

corresponding work package (WP6) is to evaluate the various experiments, EXP1 to 

EXP8, specified by the EVENTS project partners. A summary of the eight EVENTS 

experiments with their respective AD stack layers and the partners that work on each 

of these layers is shown in Figure 3. 

 

Figure 3: Summary of EVENTS experiments 

In addition, a summary of all the partners working on different datasets for the 

evaluation of their modules is shown in Figure 4. 

 

Figure 4: Data for module evaluation 

The eight experiments, described in this document, particularly with regards to their 

perception and prediction layer, have presented and will use a variety of methods and 

subsequently different PIs for their evaluation. It should be noted that while the 

reported methods will be thoroughly evaluated, they will not be benchmarked 

between them, since each experiment tackles different challenges. 

The forthcoming deliverable D6.2 (Technical evaluation results), will report on the 

results of the technical evaluation and small-scale SOTIF verification (part of task T6.3), 
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which will be based on data collected from the various abovementioned experiments 

in controlled real-world environment or in simulations (part of task T6.2). 
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Disclaimer of Warranties 
The information and views set out in this deliverable are those of the authors and do 

not necessarily reflect the official opinion of the European Union. Neither the 

European Union institutions and bodies nor any person acting on their behalf may be 

held responsible for the use which may be made of the following information.  
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