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Conflict Handling in Time-Dependent Subjective Networks

Thomas Wodtko, Thomas Griebel, Alexander Scheible, and Michael Buchholz

Abstract— With this work, we contribute novel operators
and perspectives to the field of subjective logic. We propose
a novel multi-source trust revision approach enabling multi-
source fusion, which considers majority tendencies to miti-
gate occurring conflicts. For this, the degree of conflict is
extended for a multi-source use, which allows our definition
of so-called conflict shares. Subsequently, combining our and
existing trust revision methods, we propose a generalized
trust revision approach. Extending trust revision to subjective
networks describing time-dependent processes, we propose the
use of sub subjective networks and further the transition
to recursive subjective networks. Finally, our trust revision
approach and the sub subjective network proposal are evaluated
and demonstrated based on experiments, which show conflict
handling favoring majorities and an efficient evaluation of time-
dependent decision processes.

I. INTRODUCTION

The process of decision-making is naturally subjective.
While some aspects may seem apparent to any bystander,
personal experience and trust in information sources ulti-
mately influence every decision. More formally, information
can be collected from multiple sources about the state of a
random variable in a certain domain. The weight to which
each source’s information influences a decision may depend,
besides others, on the trust in the source and the degree to
which it conflicts with others.

While the process of decision-making was mathematically
modeled using different notations before, the subjective logic
(SL) theory recently gained importance [1]. This extension
of probabilistic logic synthesizes different aspects of other
approaches, e.g., the Dempster–Shafer theory of evidence
(DST) [2], [3] and Bayesian networks [4]. Accordingly, it
is used in various areas. For example, security applications
and self-assessment algorithms have been improved using
SL [5]–[7].

Our work is based on SL since it provides powerful
concepts and operations our contribution builds upon. In
particular, multinomial and trust opinions enable a compact
mathematical representation for which fusion operators are
available. The concept of trust revision (TR) [1], [8] allows
the incorporation of conflicts during fusion operations. And
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Fig. 1. The example that is used as a reference in this paper is illustrated.
Alice (red) wants to decide about the weather (W ) at different time steps
(tk). At every time step, a variable amount of agents (green/blue) observe the
weather state and report back to Alice. Furthermore, Alice trusts each agent
to a certain degree. Additionally, Alice trusts her opinion of the last time
step (tk´1). Generally, the weather state depends on its last state (double
arrow). The way the weather changes is modeled and predicted by another
agent (orange) between each time step.

further, subjective networks (SN) provide a graph-based
structure to describe decision processes.

Extending multi-source fusion, we propose novel multi-
source TR approaches considering conflict and trust un-
certainties. Consecutively, we propose a generalized TR
method, combining ours and already existing TR approaches.
Further, enabling the efficient description of time-dependent
decision-making processes, we propose a novel perspective
of SNs, which includes recursive SNs. Finally, broadening
its use, we propose a way of applying TR to time-dependent
decision processes, differentiating between time differences
and decision conflicts. By providing these novel aspects, we
contribute to the field of SL.

In this work, we consider the following example as a
reference to demonstrate our new proposals: In regular time
intervals, Alice decides on the current weather, which she
does not directly observe. Multiple sources report their
weather observation to Alice, who trusts each source to
a certain degree. For demonstration purposes, the weather
can either be rainy or sunny, i.e., W “ trainy, sunnyu.
The number of available sources at each time step tk may
vary, and for every step, a prediction of weather changes is
available. The scenario is illustrated in Fig. 1.

To the best of our knowledge, available tools in SL do not
allow an efficient description of the described example. SNs
would indefinitely grow over time, and only one TR approach
is available. As shown later, the TR approach lacks flexibility
and cannot be adjusted to a specific task.

For better readability and self-containment of this paper,
we provide detailed definitions of SL components in the
foundations in Section II. Note that these components are
the basis of our newly developed methods. Respectively, the



context of Definitions is already available in the literature.
In contrast, our contributions are presented in the form of
Proposals and Theorems in Section III & IV.

Summarizing our work in this paper, we propose
‚ novel multi-source TR approaches,
‚ a new perspective on time-dependent SNs, and
‚ a TR in time dependent decision processes.

II. SUBJECTIVE LOGIC

This section outlines the fundamentals of SL used in this
work. For a more detailed explanation and overview, the
reader shall be referred to [1]. SL is a mathematical frame-
work that explicitly represents statistical uncertainty [1],
comparable to the DST [2], [3].

A. Representation and Similarity

The key aspect of SL is the representation of opinions.
Typically, a multinomial opinion embodies information about
a discrete random variable X for each event x in the sample
space X, in terms of belief, uncertainty, and base rate.

Definition 1 (Multinomial Opinion [1]). Consider a ran-
dom variable X in the finite domain X with cardinality
X “ |X| ě 2. A multinomial opinion can be defined as
an ordered triple ωX “ pbX , uX ,aXq with

bXpxq : X ÞÑ r0, 1s, 1 “ uX `
ÿ

xPX
bXpxq , (1a)

aXpxq : X ÞÑ r0, 1s, 1 “
ÿ

xPX
aXpxq . (1b)

The belief mass distribution bX over X reflects the belief in
each event, the uncertainty mass uX P r0, 1s signifies the
lack of evidence, and the base rate distribution aX over X
represents the prior probability for each event.

The projected probability PXpxq : X ÞÑ r0, 1s is used
to project a multinomial opinion into a classical probability
distribution. It is defined by

PXpxq “ bXpxq ` aXpxquX , (2)

and represents the expected outcome of the opinion in a
classical probability space. For illustrations of opinions, the
reader is referred to [1]. To visualize binomial opinions, the
barycentric triangle, which is displayed in Fig. 2, is used.

Given two opinions on the same variable X , the degree
of conflict (DC) is used to calculate their difference.

Definition 2 (Degree of Conflict [1]). Let ωA
X and ωB

X be
multinomial opinions of the same variable X P X provided
by source A and B, respectively. The degree of conflict
between these two opinions is defined as DC

`

ωA
X , ωB

X

˘

P

r0, 1s with

DC
`

ωA
X , ωB

X

˘

“ PD
`

ωA
X , ωB

X

˘

¨ CC
`

ωA
X , ωB

X

˘

, (3)

using the projected distance PD
`

ωA
X , ωB

X

˘

“
1
2

ř

xPX |PA
X pxq ´ PB

X pxq| P r0, 1s and the conjunctive
certainty CC

`

ωA
X , ωB

X

˘

“
`

1 ´ uA
X

˘ `

1 ´ uB
X

˘

P r0, 1s.

disbelief belief

uncertainty

aX PX(x)

uX

bX dX

ωX

Fig. 2. A binomial opinion ωX is illustrated in a barycentric triangle. The
three axes of belief, disbelief, and uncertainty are represented by bX , dX ,
and uX , respectively, and aX is the prior projecting ωX to PXpxq.

The magnitude of the DC is reciprocal to the similarity
of the two opinions ωA

X and ωB
X . In this work, the DC is

extended to calculate the conflict of multiple sources about
a common variable X P X, and the importance of this in
multi-source TF is further elaborated in Section II-D & III.

B. Multi-Source Information Fusion

Information from multiple sources about a common ran-
dom variable must be combined when describing a fusion
process. For the information fusion of several opinions,
various operators are available in literature [1], [8], [9]. The
idea is to bring together a set of opinions to reach a joint
conclusion about a specific task through the use of a fusion
operator.

Definition 3 (Multi-Source Fusion [8], [9]). Let S be a set
of N P N sources represented by S1, . . . , SN . Further, let
W S

X “ tωS1

X , . . . , ωSN

X u be a set of opinions which contains
an opinion of each source about a common variable X .
Multi-source fusion describes the process of reaching a joint
conclusion given the set of opinions W S

X .

Choosing a suitable fusion operator is vital and depends
on the task at hand. Therefore, the author of [1] proposes
certain criteria to be considered for this. Since used later,
the multi-source fusion operators cumulative belief fusion
(CBF) and averaging belief fusion (ABF) are defined next.
For implementation details, the reader is referred to [8], [9].

Definition 4 (Cumulative Belief Fusion [8]). The CBF
assumes that incorporating additional, independent sources
of evidence will accumulate and strengthen the overall belief.
Given S and W S

X from Definition 3, the CBF of all sources in
S is referred to ˛pSq such that ω˛pSq

X “

´

b
˛pSq

X , u
˛pSq

X ,a
˛pSq

X

¯

.
The general notation of CBF is abbreviated as

ω
˛pSq

X “ ‘pW S
Xq “ ‘

SPS

`

ωS
X

˘

“ ωS1

X ‘ . . . ‘ ωSN

X . (4)

Here, associativity, commutativity, and non-idempotent can
be verified [8].

Definition 5 (Averaging Belief Fusion [8]). The ABF takes
into account the interdependence between sources and as-
sumes that adding more sources does not necessarily lead to
a stronger conclusion with lower uncertainty. Given S and
W S

X from Definition 3, the ABF of all sources in S is referred
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Fig. 3. Inspired by [1], an exemplary TF scenario is depicted for which
TR is applied. Two agents (green) observe the state of X and report back
to a third agent (blue), which trusts each source to a certain degree. TR
describes the way of updating the trust (dashed arrows) based on the conflict
(lightning) of the two source opinions (normal arrow).

to ˛pSq such that ω˛pSq

X “

´

b
˛pSq

X , u
˛pSq

X ,a
˛pSq

X

¯

. The general
notation of ABF is abbreviated as

ω˛pSq “ ‘pW S
Xq “ ‘

SPS

`

ωS
X

˘

. (5)

Here, commutativity and idempotent can be verified [8], [9].
It shall be noted that the consecutive execution of ABF of
two opinions is non-associative.

C. Notion of Trust

Besides psychological interpretations, trust in a source
may represent, for example, some security aspects [5] or the
integrity of sensor data. In [1], Jøsang discusses different per-
spectives of trust. The computational trust in SL represents
reliability trust, which is defined as

Definition 6 (Reliability Trust [1]). Reliability trust is the
subjective belief with which an entity, A, expects that another
entity, B, performs a given action on which A’s welfare
depends [1].

In the following, trust always refers to the computational
trust of SL. Given an agent A that trusts a source B which
observes a variable X P X, A yields an opinion over X
based on trust discounting. For this, the trust of A in B is
represented by a binomial opinion ωA

B , called trust opinion.
This is combined with the opinion ωB

X of B, called evidential
belief or source opinion, by applying the trust discount
operation.

Definition 7 (Trust Discount [1]). Let ωA
B be the trust of

the agent A in the source B. Further, let ωB
X be the opinion

of B over the variable X P X. The opinion of A over X

denoted by ω
rA;Bs

X “ ωA
B b ωB

X is defined by

ω
rA;Bs

X :

$

’

’

’

&

’

’

’

%

b
rA;Bs

X pxq “ PA
B bBXpxq ,

u
rA;Bs

X “ 1 ´ PA
B

ř

xPX
bBXpxq ,

a
rA;Bs

X pxq “ aB
Xpxq .

(6)

D. Trust Revision

To fuse multiple opinions, several operators have been
introduced in Section II-B. However, additional aspects must
be considered when trust is involved in the fusion process.
Before applying one of the fusion operators described earlier,
all opinions are discounted based on the trust in its source.
Then, the fusion operation is applied to the set of discounted
opinions as before.

Definition 8 (Trust Fusion [1]). Given S and W S
X from

Definition 3, let A be an entity, ωA
S the trust of A in a source

S P S, and WA
S “ tωA

S |S P Su a set containing the trust
of A in each source. The trust fusion (TF) with respect to a
fusion operation, e.g., the CBF, is then defined by

ω
˛prA;Ssq

X “ ‘
SPS

`

ωA
S b ωS

X

˘

. (7)

As shown in Fig. 3, in a TF scenario, the TR describes the
trust adjustment based on the source opinions’ conflict. The
revision is usually based on revision factors (RF), sometimes
also called revision weight.

Definition 9 (Trust Revision [1], [8]). Given S, A, and WA
S

from Definition 8, and revision factors for each trust opinion,
i.e., RF : WA

S ÞÑ r0, 1s, the TR yields updated trust opinions
qωA
S , @S P S defined by

qωA
S :

$

’

’

’

&

’

’

’

%

qbAS “ bAS ´ bAS ¨ RFpωA
S q ,

qdAS “ dAS ` p1 ´ dAS q ¨ RFpωA
S q ,

quA
S “ uA

S ´ uA
S ¨ RFpωA

S q ,

qaAS “ aAS ,

(8)

where b denotes the belief and d the disbelief, which repre-
sent the belief masses of a binomial opinion.

One TR approach is described in [1] for two opinions. An-
other approach is proposed in [8] for two or more opinions.
Since the multi-source approach is used as a comparison it
is outlined here.

Definition 10 (Fusion Reference based Trust Revision [8]).
Given S, WA

S , and W S
X from Definition 8, a fusion reference

(FR) ωFR
X is calculated by

ωFR
X “ ω

˛prA;Ssq

X . (9)

The belief conflict BC : W S
X ÞÑ r0, 1s for each source opinion

ωS
X P W S

X is defined in relation to the FR as

BC
`

ωS
X

˘

“ DC
`

ωS
X , ωFR

X

˘

. (10)

Futher, the maximum conflict (MC) and average conflict
(AC) are calculated by

MC
`

W S
X

˘

“ max
SPS

BC
`

ωS
X

˘

, (11)

AC
`

W S
X

˘

“
1

|W S
X |

ÿ

SPS
BC

`

ωS
X

˘

. (12)

Then, the RFs of the TR are defined as

RFpωA
S q “

$

’

&

’

%

MC
`

W S
X

˘

¨ d

MC
`

W S
X

˘

´ AC
`

W S
X

˘ if d ą 0 ,

0 else ,
(13)

with d “ BC
`

ωS
X

˘

´ AC
`

W S
X

˘

.

Using the TR approach from Definition 10 only alters
the trust in sources whose BC is greater than AC. Thus,
the fusion operator choice for the reference fusion is of
importance. Depending on the operator, trust may change
or stay untouched based on the same sets of opinions and
trust.
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E. Conditional Reasoning

SL also provides tools to model conditional reasoning,
namely deduction and abduction. For this work, only the
deduction is of importance and, thus, introduced in the
following. The SL deduction describes the reasoning over
a variable based on observations of dependent variables and
extends the probabilistic deduction. For better comprehensi-
bility, the binomial deduction is introduced first, followed by
the multinomial deduction.

Definition 11 (Binomial Deduction [1]). Let X P X and
Y P Y be variables in binomial domains, i.e., X “ Y “ 2.
Further, let ωX be an evidential belief in X and the opinions
ωY |x and ωY |x be the conditional opinions of Y given that
X is true or false, respectively. Then, the binomial deduction
is defined by

ωY ||X “ ωX e
`

ωY |x , ωY |x

˘

, (14)

where ωY ||X denotes the deduced binomial opinion on Y .

In the binomial case, the variable X may only be one
of two states; thus, two conditional opinions are required
to express the conditional reasoning on Y . In contrast, for
each dimension of X , a conditional opinion on Y must be
available to allow multinomial deduction.

Definition 12 (Multinomial Deduction [1]). Let X P X and
Y P Y be multinomial variables in different multinomial
domains with cardinality X and Y , respectively. Further,
let ωY |X “ tωY |xi

| i “ 1, . . . ,X u be a set of conditional
opinions with a conditional opinion on Y for each possible
event in X. Then, the multinomial deduction is defined by

ωY ||X “ ωX e ωY |X , (15)

where ωY ||X denotes the deduced multinomial opinion on Y .

Both binomial and multinomial deduction are graphically
explained in [1] to which the reader shall be referred to.

F. Subjective Networks

In [1], SNs are introduced as a graph-based structure with
agents or sources and variables combined with conditional
and trust opinions. The general idea is illustrated in Fig. 4.

Definition 13 (Subjective Network [1]). An SN describes
a decision process and is a directed acyclic graph (DAG)
that contains agents and variables. The connections between
agents represent trust, between agents and variables obser-
vations, and between variables conditional connections.

SNSTN

SBN

A

B C D E

X Y Z

Fig. 5. An SN example similar to [1] is depicted. Dashed arrows represent
trust relations, normal arrows represent belief relations, and double arrows
represent conditional relations. The goal for A is to decide about Z given
the opinions of B, C, D, and E together with a respective trust opinion for
each of them. Here, the combination of STNs and SBNs to SNs is visible.
The upper part of the graph, which includes the trust relations of A to
other agents, is an STN, and the lower part of the graph, which includes
the agent’s observations and conditional reasoning, is an SBN.

The limitation of Bayesian networks (BN), which require
precise probabilities as inputs, is mitigated using SL opin-
ions, and conditional probability distributions are replaced
by conditional subjective opinions, leading to the concept of
subjective Bayesian networks (SBN). Then, in combination
with subjective trust networks (STN), agents can express
different conditional and evidential opinions on the same
conditionals and variables in the network, leading to SN. An
SN example similar to [1] is shown in Fig. 5. It illustrates the
decision process for A on Z. Each relation in Fig. 5, namely,
trust, belief, and conditional relations, can be denoted with
its respective SL opinion. Given the structure of Fig. 5, the
decision process can now be expressed using the previously
defined SL operators. First, the opinion from A on X is
calculated by

ω
˛prA;tB,Cusq

X “
`

ωA
B b ωB

X

˘

‘
`

ωA
C b ωB

C

˘

. (16)

Here, CBF is exemplarily used for fusion; however, any
fusion operation can be used depending on the task. Next,
the two-step deduction, from X via Y to Z, is calculated
with

ωA
Z||X “

´

ω
˛prA;tB,Cusq

X e ω
rA;Ds

Y |X

¯

e ω
rA;Es

Z|Y , (17)

where ω
rA;Ds

Y |X “
`

ωA
D bωD

Y |X

˘

and ω
rA;Es

Y |X “
`

ωA
E bωE

Z|Y

˘

represent the discounted conditional opinions.

III. MULTI-SOURCE CONFLICT HANDLING

The conflict of two opinions can be evaluated using the
DC (see Definition 2) in fusion and TF scenarios. Handling
this conflict means taking action in case of high conflict
magnitudes. Jøsang presents a TR approach in [1] for two
source opinions, where the trust in sources is altered based
on uncertainty differentials. By using these differentials, the
conflict is assigned to each source based on its trust uncer-
tainty in relation to the others. Thus, trust uncertainties are
the main values that influence this TR behavior. This work
will extend the uncertainty differential-based TR approach
for more than two sources. Since the extended approach is
still only based on trust uncertainties, no relations between
source opinions can be considered. In contrast, using a FR,
Jøsang et al. present a multi-source TR approach in [8].
The trust is revised based on the conflict between a source



opinion and the FR. While this allows a definition for more
than two source opinions, choosing a suitable operator is
vital to the TR and must be done task-specifically. This
work aims to find a TR approach that incorporates majority
tendencies within the source opinions without requiring an
FR. With this, the approach is independent of prior fusion
operator choices. Although at first glance, it seems that the
multi-source TR approach presented by Jøsang et al. [8]
already incorporates majority tendencies to a certain degree,
our experiments in Section V will demonstrate different
behaviors and the advantage of our approach based on the
introductory example.

A. Degree of Conflict

In this section, we propose an extension of the DC
definition by Jøsang in [1] to allow more than two opinions
to be compared. The goal is to omit the use of any FR to
provide an approach that is not task-specific. Instead, the
conflict of each possible opinion pair is considered.

Proposal 1 (Multi-Source Degree of Conflict). Let S be a
set of N P N sources observing a common random variable
X P X and W S

X “ tωS
X |S P Su. Further, let A be an agent

and WA
S a set that contains the trust of A in each source.

Then, the accumulated degree of conflict (DCacc) is defined
as

DCacc

`

WA
S ,W S

X

˘

“
ÿ

tSi,SjuP SˆS
iăj

DC
´

ω
rA;Sis

X , ω
rA;Sjs

X

¯

.

(18)

The average degree of conflict (DCavg) normalizes the DCacc

with the total number of opinion pairs and is defined by

DCavg

`

WA
S ,W S

X

˘

“
1

c
DCacc

`

WA
S ,W S

X

˘

, (19)

where c P N is total number of pairs with c “
NpN´1q

2 .

In the special case of N “ 2, the DCacc and the DCavg

equal the DC. Next, conflict shares (CS) are proposed to
determine majority tendencies within the sources. An CS
assigns each source a share to which it is responsible for
the current conflict. For this, the DCavg is considered with
respect to a DCavg calculation without a certain source’s
opinion. A change in the conflict indicates that the source’s
opinion is either inhibiting or favoring the conflict.

Proposal 2 (Conflict Share). Given S, W S
X , A, and WA

S
from Proposal 1, the CS : WA

S ÞÑ r0, 1s of a trust opinion
ωA
S P WA

S is defined as

CSpωA
S q “ max

¨

˝0 , 1 ´

DCavg

´

WA
SzS ,W

SzS
X

¯

DCavg

´

WA
S ,W S

X

¯

˛

‚ . (20)

Using the DCavg over the DCacc automatically considers the
varying number of pairs within the calculation.

The DCavg value can either increase, decrease, or stay
the same when a source is not considered compared to

the DCavg of all sources. If the conflict increases or does
not change, a source is assumed not to be responsible for
the overall conflict potential since it has a rather mitigating
effect. Hence, the CS is clipped to the interval r0, 1s.

B. Trust Revision

In this section, we first extend the TR concept based on
uncertainty differentials (UD) of [1] to the multi-source case.
Then, we use CSs to propose a novel TR approach. In [1],
UD only considers the uncertainty of trust into two sources.
More specifically, the UD for a source yields the proportion
of its uncertainty relative to the sum of uncertainties of both.
This can be extended to allow more than two sources.

Proposal 3 (Multi-Source Uncertainty Differentials). With
S, A, and WA

S from Proposal 1, the multi-source UD :
WA

S ÞÑ r0, 1s is defined by

UD
`

ωA
S

˘

“
uA
S

ř

S‹PS
uA
S‹

(21)

Using the proposed UD extension from Proposal 1 and
following [1], RFs can now be calculated using either DCacc

or DCavg.

Proposal 4 (Multi-Source Trust Revision with Uncer-
tainty Differentials). Given S, W S

X , A, and WA
S from Pro-

posal 1, the extended RFs, i.e., RFUD
acc : WA

S ÞÑ r0, 1s and
RFUD

avg : WA
S ÞÑ r0, 1s, are defined by

RFUD
acc

`

ωA
S

˘

“ UD
`

ωA
S

˘

¨ DCacc

`

WA
S , W S

X

˘

, (22)

RFUD
avg

`

ωA
S

˘

“ UD
`

ωA
S

˘

¨ DCavg

`

WA
S , W S

X

˘

. (23)

Next, using our proposed CS method from Proposal 2
leads to a novel TR approach favoring majority tendencies
within a set of sources while still considering each source’s
trust, making it even more powerful.

Proposal 5 (Multi-Source Trust Revision with Conflict
Shares). With S, W S

X , A, and WA
S from Proposal 1, the

extended RFs, i.e., RFCS
acc : WA

S ÞÑ r0, 1s and RFCS
avg :

WA
S ÞÑ r0, 1s using the CS concept are defined by

RFCS
acc

`

ωA
S

˘

“ CS
`

ωA
S

˘

¨ DCacc

`

WA
S , W S

X

˘

, (24)

RFCS
avg

`

ωA
S

˘

“ CS
`

ωA
S

˘

¨ DCavg

`

WA
S , W S

X

˘

. (25)

Given the different TR approaches, it is desirable and
advantageous to combine them into a generalized TR (gTR)
concept.

Proposal 6 (Generalized Multi-Source Trust Revision).
Given M P N different multi-source TR approaches, weights
for each approach α P RM

ě0, and S, W S
X , A, and WA

S from
Proposal 1, the gTR is defined by

RFg

`

ωA
S

˘

“ min

˜

1 ,
M
ÿ

i“0

αi RFi

`

ωA
S

˘

¸

. (26)

Limiting the sum of weights seems reasonable, i.e.,
ř

i αi ď 1.



A0

sSN0

P1

A1

sSN1

Pk

Ak

sSNk

. . .

. . .

S1
0

. . . Sn0
0 S1

1
. . . Sn1

1 S1
k

. . . Snk

k

W0 W1 Wk

(a) Growing SN of the weather forecast example.

Ak´1

sSNk´1

Pk

Ak

sSNk

S1
k

. . . Snk

k

Wk´1 Wk

(b) Recursive SN of the weather forecast example.

Fig. 6. The example described in Section I is illustrated as SN in two variants. In 6a, the SN grows over time, while the recursive definition in 6b shifts
its reference time point and makes it computationally more efficient.

IV. TIME-DEPENDENT SUBJECTIVE NETWORKS

In this section, we propose a new perspective on SNs that
allows us to use SNs to efficiently model processes like our
motivation weather forecast example illustrated in Fig. 1.

Generally, an SN is a DAG [1]. Thus, by definition, each
agent within the graph is uniquely represented by a node.
This means that edges in relation to an agent are connected
to the same node representing this agent. When modeling a
time-independent decision process, all considered informa-
tion is available, and agents do not change their observations
and corresponding opinions during the process. It, thus,
makes sense to connect every edge to the same node from
a decision making point of view. In contrast, however, when
dealing with time-dependent decision processes, agents may
appear multiple times, and the graph structure is increasing
over time. Respectively, new nodes and edges must be added,
and to accurately describe the decision process, adding edges
to already considered nodes alters results at places where it
is not supposed to. Hence, we propose to consider each time
step within a time-dependent as its own sub-SN (sSN).

Proposal 7 (Time-Dependent Subjective Networks). To
describe a decision process over time using an SN, we
propose to consider time-specific parts of the SN as their
own sub-SN (sSN), which at time step k is denoted by sSNk.
For this, the following aspects must be considered:

‚ Agents may appear in multiple sSN if and only if
their connections are independent of past and future
appearances; thus, they are de facto considered as
different agents at different time steps.

‚ The value of random variables must not change over
time and, thus, must not appear multiple times.

‚ Connections between nodes of different sSN must follow
the same rules as within each SN with the addition
that all relations must maintain the causality, i.e., no
connection to future sSN is allowed when evaluating
the decision process at a certain time step.

Using the notation presented in Section II-F and our
proposed sSN division, the introductory example of Fig 1 is
presented in Fig. 6a. Still, the structure of the SN grows over

time as more and more nodes and variables are added to the
graph. While this accurately describes the decision process,
it is complex to maintain this structure for long time periods.

Theorem 1 (Markov Property of Time-Dependent Sub-
jective Networks). The Markov property holds if any sSN
within an SN has connections only to its preceding sSN.

Proof. By definition, an sSN represents a part of an SN at
a certain time step. Thus, given that an sSN has connections
only to its preceding sSN, every entity within an sSN may
only depend on the current and the previous time step.

Theorem 2 (Recursive Time-Dependent Subjective Net-
works). If the Markov property holds for a time-dependent
SN, and the structure within a sSN does not change over
time, the SN can be represented in a recursive manner.

Proof. Given a time step k, if the Markov property holds, the
sSNk`1 may only depend on values of sSNk. However, due
to causality, all values sSNk`1 depends on can be evaluated
at the time step k. Thus, if the structure of each sSN is the
same, the sSN at any time step can fully be evaluated based
on previously evaluated sSN.

Following Theorem 2, the SN of Fig. 6a is illustrated in a
recursive manner in Fig. 6b. Formulary, using CBF and TR,
the opinion of Ak on Wk is defined as

ωAk

Wk
“

´´

ωAk

Ak´1
b ω

Ak´1

Wk´1

¯

e

´

qωAk

Pk
b ωPk

Wk|Wk´1

¯¯

‘ qω
rAk,S

1
ks

Wk
‘ ¨ ¨ ¨ ‘ qω

rAk,S
nk
k s

Wk
.

(27)

Here, the advantage of a recursive definition becomes appar-
ent since it can be defined compact, which allows an efficient
online evaluation.

Remark 1. Using TR in the trusted fusion described in
Eq. (27) has not been clearly specified yet. We propose to
assign any conflict-based RF to the trust of the conditional
opinion as it is mainly responsible for possible conflicts
during fusion. Altering the trust in previous opinions based
on, e.g., the time difference seems more reasonable.



distrust trust

uncertainty

ωAS0

ωAS1

ωAS2

ω̌AS2
ω̌AS0

disbelief
(sunny)

belief
(rainy)

uncertainty

ωS0

X

ωS1

X
ωS2

X = ω
[A;S2]
X

ω
[A;S0]
X

ω
[A;S1]
X

ω̌
[A;S2]
X

ω̌
[A;S0]
X

disbelief
(sunny)

belief
(rainy)

uncertainty

ω
�([A;S])
X

ω̌
�([A;S])
X ω̌

�([A;S])
X

b
˛

Raw
TF
JØSANG
OURS

Fig. 7. TR results for a single step of the weather forecast experiment. The left triangle shows the trust of A into the sources Si, the middle triangle the
source opinions, and the right triangle the fusion results. Gray-colored opinions are original source opinions, blue-colored opinions represent a TF without
TR, and green- and orange-colored opinions illustrate the changes when using TR fusion with OURS and JØSANG, respectively. The base rate aXpxq “ 1
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V. EXPERIMENTS

In this section, we investigate the impacts of our proposals
based on the weather forecast scenario described in Section I.
First, our proposed TR approach is evaluated in comparison
with the existing approach of Jøsang [8]. Then, we show and
discuss the results of our time-dependent experiment.

A. Trust Revision

A time-independent experiment allows us to show more
detailed insights into our TR approach. For this, the time-
independent weather forecast scenario with specially selected
values is used. At first, we compare our CS-based TR
approach using RFCS

avg , called OURS in the following, to
the FR-based approach of Jøsang from Definition 10, called
JØSANG in the following. Given Alice and three sources,
the fusion results are illustrated in Fig. 7. In the scenario,
the sources S0 and S1 predict sunny weather, represented
by the gray opinions ωS0

X and ωS1

X , respectively, but Alice’s
trust in both sources, represented by the blue trust opinions
ωA
S0

and ωA
S1

, is reduced. Source S2 predicts rainy weather,
represented by the blue opinion ωS2

X , and Alice has no
doubts about this source (blue trust opinion ωA

S2
). As a result,

Alice’s trust-fused opinion about the current weather state is
rather indecisive, represented by the blue opinion ω

˛prA;Ssq

X .
Using JØSANG reduces the trust in S0, represented by the
orange trust opinion shift, as it is the only one with greater
than average conflict with the FR; respectively, Alice’s TR
fused opinion tends more to rainy weather (orange opinion
ω̃

˛prA;Ssq

X ). In contrast, using OURS implicitly favors the
majority of source opinions towards sunny weather; thus, TR
reduces the trust in S2, represented by the green trust opinion
shift, which is the only source predicting rain. Consequently,
Alice’s opinion about the weather changes towards sunny
weather (green opinion ω̃

˛prA;Ssq

X ).
In the same scenario, the behavior of the gTR can be

demonstrated. It allows the use of both previously shown TR
approaches simultaneously. The recommended weight limits
are omitted for demonstration and illustration purposes,

disbelief
(sunny)

belief
(rainy)

uncertainty

(a) gTR using OURS and JØSANG.

disbelief
(sunny)

belief
(rainy)

uncertainty

(b) gTR using OURS and MS-DIFF.

Fig. 8. TR results of the gTR approach are shown. The blue opinions
represent the TF results without TR. Green/Orange opinions show the TF
results using gTR. Along the orange direction αJØSANG and αMS-DIFF is
increased, and, along the green direction αOURS .

and the weights for both approaches are swept over the
interval r0, 5s. While this leads to impractically high RF,
it helps to show the behavior based on the relation of both
weights. The result is shown in Fig. 8a. As required, by
setting the values of αOURS and αJØSANG, the result alters
accordingly. JØSANG converges at the rightmost point and,
thus, increasing its weight further has no effect. Additionally,



TABLE I
OPINIONS USED IN THE TIME-DEPENDENT EXPERIMENT.

Alice Sources Const Pred. Change Pred.

ω
Ak
Ak´1

ωA
Si
k

ωA
Pk

ω
Si
k

rainy ω
Si
k

sunny ω
Pk
rainy ω

Pk
sunny ω

Pk
rainy ω

Pk
sunny

bX 0.90 0.50 0.50 0.80 0.00 0.99 0.00 0.00 0.99
dX 0.05 0.00 0.00 0.00 0.80 0.00 0.99 0.99 0.00
uX 0.05 0.50 0.50 0.20 0.20 0.01 0.01 0.01 0.01

aXpxq 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50
PXpxq 0.95 1.00 1.00 0.90 0.10 0.99 0.00 0.00 0.99

in Fig. 8b, results are illustrated using OURS and the multi-
source uncertainty differential approach, called MS-UD.
Here, the weight αMS-UD is swept over r0, 20s. The results
demonstrate that multiple TR approaches can be combined.
Moreover, the use of gTR can be task-specifically adjusted.
Thus, depending on the task at hand, the TR behavior can
be adjusted to any weighted combination of multiple TR
approaches.

B. Time-Dependent Subjective Networks

In this section, the time-dependent weather forecast exam-
ple is evaluated. For simplicity reasons, the weather domain
is W “ trainypbeliefq, sunnypdisbeliefqu, the number of
sources in each time step is constant, and Alice’s trust in
each source prior to TR is the same. Further, Alice’s trust
in her previous decision only depends on the time difference
between steps. The sources observe a predefined opinion for
rainy and sunny weather, respectively. A prediction either
predicts a constant or a changing weather. All opinions are
shown in Table I.

In the following, OURS is compared to JØSANG and to a
fusion where no trust is considered. The prediction is applied
in all three cases, and cumulative fusion is used. Our scenario
starts with sunny weather. All sources report back to Alice
accordingly. Next, at time step 5, one source is reporting
rainy weather incorrectly. At time step 15, an incorrect
change in weather is predicted. Then, at time step 30, the
weather switches to sunny, which is correctly predicted.
Finally, at time step 40, the weather switches back again
but without being predicted. Results are shown in Fig. 9.

Generally, the small error of all approaches at time step 30
proves that a correct prediction allows a correct decision with
fast changes in the observed state. However, whenever infor-
mation is erroneous, differences in the approaches become
visible. In all three cases of misinformation, OURS yields the
lowest error compared to the ground truth (GT) information.
This means that incorrect inputs have less influence while, at
the same time, the decision adapts to changes more quickly
compared to the other methods. While JØSANG reduces the
influence of errors in some cases (time step 15, and 40),
it increases the influence in others (time step 5). Here, the
consideration of majority tendencies in OURS improves the
overall decision and, thus, OURS is better suited for the
task than JØSANG. This demonstrates the choice of the TR
approach is of importance.
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Fig. 9. The projected probability progression and the error with respect to
the GT over time are shown for different settings. In red, the GT is shown;
at time step 30, the weather switches from sunny to rainy, and at time step
40 back to sunny.

VI. CONCLUSION

Summarizing this work, we proposed a novel trust revision
approach, demonstrated its differences and advantages from
existing methods, and provided a generalized trust revision
approach enabling the combined use of different trust revi-
sion operators. Additionally, we proposed rules under which
a subjective network can be transformed into a recursive
sub-subjective network. Compared to existing methods, they
allow an efficient modeling and evaluation of time-dependent
decision processes. In combination with the proposed trust
revision approaches, this work extends the use of subjective
networks and allows for efficient conflict handling in time-
dependent decision processes.
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