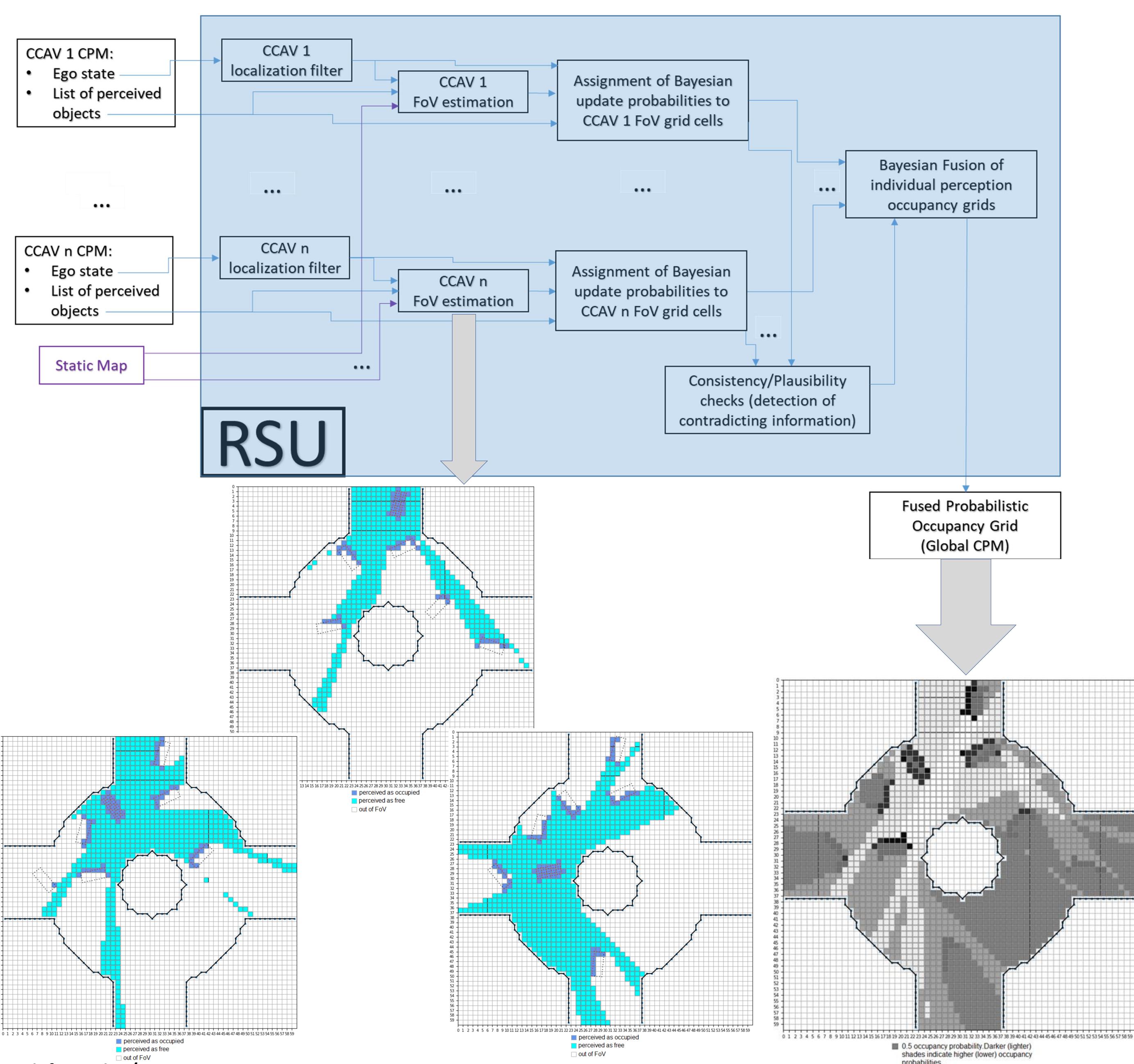


Towards collective perception hybrid testing in a roundabout scenario with AVs


Markos Antonopoulos¹, Anastasia Bolovinou¹, Bill Roungas^{1*}, Asier Arizala^{2,3}, Angelos Amditis¹

¹Institute of Communication and Computer Systems, ²Tecnalia Research and Innovation, ³University of Basque Country

Research Objectives

- 1. Develop algorithms for fusion of object information coming from multiple observers based on probabilistic scene state estimation via occupancy grid maps
- 2. Develop data reliability metrics enabling false data detection and object associations' conflict resolution.

CPM information/Inputs

- Ego FoV angle.
- <u>Ego state information</u> for each CCAV:
 - Ego Position coordinates in x,y
 - Ego Speed vector v_x , v_y
 - Ego Heading (yaw angle)
- Perceived objects information

for each perceived object:

- Position coordinates in x,y
- Speed vector v_x , v_y
- Heading (yaw angle)

Individual CCAV perception model

A known individual perception model is assumed for each CCAV, provided in terms of a standard forward sensor model i.e. the 4 probabilities $P(M_i = 0 | A_i = 0)$, $P(M_i = 1 | A_i = 0)$, $P(M_i = 0 | A_i = 1)$, $P(M_i = 1 | A_i = 1)$ where

- $\checkmark A_i \in \{0,1\}$ denotes the random variable "cell i is actually occupied $(A_i = 1)$ or not $(A_i = 0)$ "
- $\checkmark M_i \in \{0,1\}$ denotes the random variable "cell i is perceived as occupied $(M_i = 1)$ or not $(M_i = 0)$ "

Bayesian Fusion

$$(A_{i} = 1 | M_{i}^{1}, ..., M_{i}^{k}) = \frac{P(M_{i}^{k} | A_{i} = 1)P(A_{i} = 1 | M_{i}^{1}, ..., M_{i}^{k-1})}{P(M_{i}^{k} | A_{i} = 1)P(A_{i} = 1 | M_{i}^{1}, ..., M_{i}^{k-1}) + P(M_{i}^{k} | A_{i} = 0)P(A_{i} = 0 | M_{i}^{1}, ..., M_{i}^{k-1})}$$

$$P(A_{i} = 0 | M_{i}^{1}, ..., M_{i}^{k}) = \frac{P(M_{i}^{k} | A_{i} = 0)P(A_{i} = 0 | M_{i}^{1}, ..., M_{i}^{k-1})}{P(M_{i}^{k} | A_{i} = 1)P(A_{i} = 1 | M_{i}^{1}, ..., M_{i}^{k-1}) + P(M_{i}^{k} | A_{i} = 0)P(A_{i} = 0 | M_{i}^{1}, ..., M_{i}^{k-1})}$$

