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Adaptive Patched Grid Mapping

Thomas Wodtko, Thomas Griebel, and Michael Buchholz

Abstract— In this work, we propose a novel adaptive grid
mapping approach, the Adaptive Patched Grid Map, which en-
ables a situational aware grid based perception for autonomous
vehicles. Its structure allows a flexible representation of the
surrounding unstructured environment. By splitting types of
information into separate layers less memory is allocated when
data is unevenly or sporadically available. However, layers
must be resampled during the fusion process to cope with
dynamically changing cell sizes. Therefore, we propose a novel
spatial cell fusion approach. Together with the proposed fu-
sion framework, dynamically changing external requirements,
such as cell resolution specifications and horizon targets, are
considered. For our evaluation, real-world data were recorded
from an autonomous vehicle driving through various traffic
situations. Based on this, the memory efficiency is compared to
other approaches, and fusion execution times are determined.
The results confirm the adaptation to requirement changes and
a significant memory usage reduction.

I. INTRODUCTION

Deploying robots with an increasing level of autonomy to
cope with a broader range of applications requires an abstract
representation of unstructured environments to operate within
those [1]. Today, not only robots in small working envi-
ronments but also autonomous vehicles rely on grid-based
environment representations [2]. The main goal of available
approaches [3]–[5] is to classify a cell’s state over time
robustly. For moving objects, velocities are estimated using
either classical approaches [3] or deep learning methods [4].

In general, grid map-based sensor fusion allows for
using several sensor types. Especially, lidar, camera, and
radar sensors, most commonly used for autonomous driving,
can be integrated. The Dempster-Shafer theory of evidence
(DST) [6], [7] is often used to combine different types of
information from these sensors. It enables the combination
of binomial information, e.g., if a cell is occupied or free,
with multinomial semantic class labels.

However, with a growing operational design domain
(ODD) and, thus, an increasing area of interest, grid map-
based sensor fusion must meet more challenging demands,
such as capturing and fusing data of large areas, while stay-
ing computationally efficient. Therefore, different strategies
for managing cells in a grid map format have emerged [8],
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Fig. 1. The APGM structure is illustrated for a vehicle (yellow) driving
on the road approaching an intersection. The environment is divided into
patches (dashed gray), and each patch contains a variable number of layers
(colored rounded rectangles). Each layer has a variable cell resolution
(rasterization). For illustration reasons, only the area in front of the vehicle
shows layers. The cell resolution is set according to the current scenario.
Here, layers with a road have higher cell resolutions than other layers at
the same distance.

[9]. By altering the number of cells allocated at a time,
these strategies mainly try to reduce computational expenses.
Alternatively, some autonomous vehicles decentralize the
fusion process [10]. For this, specific sensor modules acquire
and preprocess sensor data before the information is gathered
and fused in a central unit. While the workload is distributed
and parallel processing is possible, these architectures require
transmitting intermediate results over a link with a limited
data rate. Hence, such a distribution can reduce processing
time for the cost of link latency. Additionally, recent pub-
lications discuss the issue that autonomous vehicles tend to
run the entire software stack continuously [11], [12]. For
that, software components must adaptively realize situational
requirements to become more efficient.

To the best of our knowledge, we propose the first adaptive
grid map structure allowing for a dynamic cell resolution and
a varying amount of layers, illustrated in Fig. 1. With this
work, we propose the following:

• The Adaptive Patched Grid Map (APGM) in Section IV-
A;

• a mathematical derivation of the generic APGM fusion
framework IV-B;

• fusion operators for adaptively changing cell resolutions
in Section IV-C; and

• an open-source C++ library1 of the adaptive grid map
and its fusion framework.

1https://github.com/wodtko/adaptive patched gridmap

https://github.com/wodtko/adaptive_patched_gridmap


II. RELATED WORK

The use of grid maps for perception and navigation tasks
originates from robotics [1], [2]. Splitting the robot’s envi-
ronment into cells is an abstract representation that allows for
using sensor measurements of an unstructured environment
without the need for object detectors. A classic grid map
combines all probabilities for a cell to be occupied over time.
For this, it is assumed that the measurements of different
cells are independent. The grid map size is chosen to cover
the whole working environment; thus, the memory allocation
stays constant.

However, with a larger working environment, the execu-
tion times of grid maps increases. Especially for autonomous
vehicles, it is infeasible to allocate a single grid map covering
multiple kilometers with cells on a centimeter scale. Hence,
the first approaches for autonomous vehicles usually create
a grid map of only the near field environment to stay
computationally efficient [13], [14]. Even recent approaches
with increased capabilities mostly use this strategy for com-
putational reasons [3], [5]. For the fusion of multiple sensor
modalities and to allow classical approaches for velocity,
a cell is usually represented by a basic belief assignment
of the Dempster-Shafer theory. Further, in addition to the
cell’s occupancy state, velocities are estimated in a dynamic
occupancy grid map. For this, either classical [5] or deep
learning [4] approaches are available.

In this work, however, the focus is on improving the under-
lying grid map structure rather than the dynamic occupancy
estimation. Similarly, recent approaches proposed new grid
map structures and analyzed the implementation impact on
efficiency [8], [9]. Retaining a moving grid, the authors of [8]
proposed a method to reduce the cell resolution for the far
field of the environment. While they can effectively lower the
number of cells required, the grid map layout must be set
once before execution. Thus, all possible requirements must
be met with a single layout, and requirement changes can not
lead to further improvements. In contrast, the authors of [9]
proposed different ways of dividing the environment into
sub-maps first. In principle, this would allow reacting dynam-
ically on external requirements. However, the focus of [9] is
to analyze different container structures and implementations
concerning access and processing times. The environment is
also divided into sub-maps by [15], [16]. While [16] focuses
on the localization within a large-scale environment rather
than representing the immediate surroundings, the authors
of [15] propose the use of sub-maps in combination with
infrastructure sensors. Efficiently considering infrastructure
information is the main benefit of using sub-map grid maps.
Hence, the combination of the adaptive grid map of this work
with infrastructure information is part of future work.

Even though some approaches improve efficiency by ne-
glecting some areas [9] or by choosing non-uniform cell
resolutions [8], all approaches only consider static require-
ments. Static, in this case, implies that all requirements
are predefined and any requirement change during run time
cannot be used for further efficiency improvements. Recent

publications, however, provide situation-aware requirements
for modules within autonomous vehicles [11]. Those re-
quirements comprise resolution demands, areas of interest,
and horizon targets. Since most algorithms in autonomous
vehicles do not consider such requirements, the authors
propose to deactivate not required modules or to crop their
input data to save energy. This shows the need for approaches
taking those requirements into account, allowing further
improvements of methods as proposed by [11]. In the case
of modular, decentralized sensor setups [10], the potential
for savings is even higher since certain areas are always
unconsidered [12]. To the best of our knowledge, no grid
mapping algorithm exists that adaptively realizes dynamic
requirements, as provided by [11], [12].

III. FOUNDATIONS

This section gives a brief overview of the required fun-
damentals. In Section III-A the basics of the DST are
outlined and Section III-B briefly compares two fundamental
approaches for a grid map based perception. For more details,
additional sources are given in the respective subsections.

A. Dempster-Shafer Theory of Evidence

In contrast to the Bayesian representation of information
in grid maps [1], the DST enables decision-free reasoning
by considering the evidence of information. Therefore, the
DST is introduced in this section. More detailed information
can be found in [6], [7], [17].

Three elementary functions are of importance in the DST:
the basic belief assignment function (BBA) m, the belief
function Bel, and the plausibility function Pl. The universal
set which contains all considered elementary states or hy-
potheses is called the frame of discernment Ω. Later, e.g.,
for lidar occupancy measurements Ω = {occupied, free}.
A BBA defines a mapping of evidence mass to all subsets
A ⊂ Ω. Formally, a BBA m : 2Ω → [0, 1] is defined by

m(∅) = 0 , (1a)∑
A⊆2Ω

m(A) = 1 , (1b)

where 2Ω is the power set of Ω, and ∅ the empty set.
Since (1a) must hold for all BBAs; it is always implicitly
considered in the following to enable better readability.
Therefore, the value of BBAs for the empty set is not
explicitly shown. For A ⊆ 2Ω, |A| ≥ 2, the value of m(A)
represents all available evidence mass supporting any but not
a specific hypothesis in A. Thus, the uncertainty of a BBA is
represented by m(Ω) as it is the evidence mass that cannot
be assigned to any subset. Similar to [14], a BBA is assumed
to be a probability function in this work.

Given a BBA, the belief and plausibility of a set A are
the upper and lower bound to the interval containing the
probability of A. Generally speaking, the belief is the sum
of evidence that explicitly supports A, while the plausibility
is the sum of evidence that A does not entirely contradict.
Therefore, the belief and plausibility can be interpreted as a
pessimistic and an optimistic guess of the exact probability



of A, respectively. Formally, the belief function Bel : 2Ω →
[0, 1] and the plausibility function Pl : 2Ω → [0, 1] are
defined by

Bel(A) =
∑
B⊆A

m(B) , (2a)

Pl(A) =
∑

B∩A̸=∅

m(B) . (2b)

With the complement of A denoted by Ac, both functions
are connected by

Pl(A) = 1−Bel(Ac) . (3)

In order to incorporate multiple BBAs into the reasoning
process, BBAs can be merged using the Dempster-Shafer rule
of combination (DST-RC). The combination of two BBAs
m1 and m2, denoted as m1⊕2, is defined by

m1⊕2(A) =

∑
B∩C=A

m1(B)m2(C)

1−K
, (4a)

with K =
∑

B∩C=∅

m1(B)m2(C) . (4b)

Here, K ∈ (0, 1) represents the belief mass associated with
the conflict between the two BBAs. The neutral element to
the DST-RC is the vacuous BBA with m(Ω) = 1. As shown
in [7], [17], the DST-RC can lead to counter-intuitive results,
especially for |Ω| > 2.

Fusing information from multiple cells and, thus, choosing
combination operators is of interest in later sections. In
anticipation of later reference, an example of the DST-RC
is given for the binomial case. With a frame of discernment
Ω = {A,B} and the two strongly conflicting BBAs m1 and
m2 the combined BBA m3 = m1⊕2 is given by

m1(A) = 0.9 , m1(B) = 0 , m1(Ω) = 0.1,

m2(A) = 0 , m2(B) = 0.9 , m2(Ω) = 0.1,

m3(A) ≈ 0.47 , m3(B) ≈ 0.47 , m3(Ω) ≈ 0.05.

(5)

Here, the uncertainty decreases by accumulating equally
uncertain BBAs using the DST-RC, even in strong conflicts.
This shows that the uncertainty m3(Ω) does not represent the
consistency of gathered information, but rather the amount
of evidence received for a certain state.

Whenever there is the need to make a decision, belief
or plausibility can be used; however, the uncertainty infor-
mation would be ignored. In contrast, using the pignistic
transformation [7]

BetPm(A) =
∑
B⊆Ω

|A ∩B|
|B|

m(B) , (6)

a BBA m can be transformed into a probabilistic function
considering the uncertainty of m, which can then be con-
sulted for a decision.

(a) Sub-Map Strategy (b) Moving Strategy

Fig. 2. Two major strategies to store grid map cells for autonomous vehicles
are shown. In (a) the world is divided into sub-maps (dashed gray), which
may contain cells (rasterized color), instead in (b) cells are stored in a single
rectangular grid moving with the vehicle. Red cells illustrate the grid map
for the lower left vehicle (yellow) and the blue cells for the upper right
vehicle (yellow).

Given a BBA of a source knowing that this source is
only reliable to a probability of α ∈ [0, 1], the BBA can
be discounted [18] to reflect this by

mα(A) =

{
1− α+α ·m(Ω) , if A = Ω ,

α ·m(A) , else .
(7)

B. Grid Mapping

The basic idea of grid maps is to divide an unstructured
environment into cells. Each cell contains information about
the state of the location represented by the respective cell.
The type of information is task-specific, e.g., a cell can
contain simple probabilities for a cell being occupied [1]
or multinomial information including semantic labels and
occupancy evidences [5]. In most state-of-the-art approaches
for autonomous vehicles [3]–[5], BBAs are used to en-
code information, allowing efficient processing. When using
BBAs, the dimension of the frame of discernment Ω defines
the amount of bytes required to represent a cell and, thus,
the required memory space and link latency when storing or
transmitting grid map information respectively.

For the cell division of the environment, two major
dividing strategies require different memory interactions.
Fig. 2 illustrates both strategies for a moving autonomous
vehicle. The currently most common strategy for autonomous
vehicles is to have a single grid map with a constant cell
pattern [4], [5]. When the vehicle moves, the grid map is
shifted with the vehicle, keeping it in the center of the map.
By this, the amount and pattern of cells are kept constant,
allowing storage of all cells in a fixed layout.

In contrast, the environment can also be divided into sub-
maps first. Each sub-map is referenced to a global datum
and is not moved with the vehicle. The grid cells are then
stored within these sub-maps. Therefore, sub-maps need to
be dynamically created or deleted concerning the vehicle
position, which increases the complexity of storing cell data.

The main advantage of using a single-moving grid is
computational efficiency. On the other hand, using a sub-map
strategy allows for allocating sub-maps only where they are
required [9].



IV. METHOD

The APGM is presented in this section. First, the general
structure is outlined, and a mathematical representation is
given. Afterward, the issue of fusing differently sized cells
is explained and a fitting fusion operator is presented. It
shall be mentioned, that the derivation of the fusion operator
is focusing on points cloud measurements of, e.g., lidar
sensors, using the measurement model of [5]. Although a
fusion operator for camera semantic labels can be derived
in a similar manner, its definition for an arbitrary amount of
semantic hypotheses is part of future work.

A. Adaptive Patched Grid Map

Here, the APGM is textually described first; then, a precise
definition is given. The APGM is a patched grid map with a
dynamic number of layers per patch. It enables the realization
of external requirements, especially resolution demands are
considered.

As illustrated in Fig. 1, the APGM uses the sub-map
strategy to divide the environment into sub-maps, called
patches in this work. Similar to [9], a grid map has a global
reference datum, a patch edge length, and a dynamic set of
patches. Instead of directly dividing each patch into cells,
a patch contains a dynamic set of layers. Each layer then
divides the environment into cells. Therefore, areas in the
environment can be covered by multiple cells of different
layers. In contrast to a cell containing all conceivable infor-
mation [5], the information is split into smaller portions using
separate layers. The resolution of a layer can be individually
defined, meaning that layers of the same patch can have
different resolutions. Furthermore, two layers of the same
type in different patches may also have different resolutions.

Data availability can influence the grid map layout by
dividing cell information into different layers. When, e.g.,
two sensor types with different fields of view (FOV) are
used, each layer must only be available within the FOV
of the respective sensor type. Especially when sensors are
temporarily switched off, respective layers do not need to be
allocated. Further, due to the sub-map strategy, specific areas
can be omitted entirely whenever external requirements al-
low. By this, layers and the corresponding cells can be placed
and allocated according to dynamic external requirements
without redefining the whole structure.

In the following, a precise definition of the APGM is
given, and an exemplary visual reference to the symbols used
is illustrated in Fig. 3. The structure is defined bottom up for
better readability, starting on the cell level first. The sensor
measurement information is split into parts; each part has a
specific type t ∈ T , where T is the set containing all informa-
tion types with the cardinality |T | > 0. For example, T =
{occupancy(occ), semantic(sem), velocity(vel)}. Further,
Ct is the value space for cells ct ∈ Ct of type t. For type
velocity Cvel = R2. A layer lrt ∈ L with resolution step
r ∈ N containing cells of type t is defined as

lrt ∈ Cm×m
t , m = 2r (8)

dg
N

p(1,0)p(0,0)

l1sem

l2occ

csem(1,0)

e

e
dp(1,0)

dcocc
(1,1)

Fig. 3. A grid map g with two patches, p(0,0) and p(1,0), the edge length
e, and the global reference dg is illustrated. The patch p(0,0) is empty and
the patch p(1,0) with reference dp(1,0) contains two layers, l2occ and l1sem,
with T = {occupancy(occ), semantic(sem)}. The cell csem

(1,0)
is a cell

of the semantic layer with index (1, 0) and dcocc
(1,1)

the reference of a cell
of the occupancy layer with index (1, 1).

and the corresponding set L containing all layers is given by

L = {lrt }t∈T,r∈N . (9)

Using powers of two for the dimension m ∈ N allows a
more effortless fusion and resampling process; generally, an
arbitrary resolution could be set. Next, each patch p(ix,iy) ∈
P has an index (ix, iy) ∈ Z× Z and is a set of layers, i.e.,

p(ix,iy) ⊂ L . (10)

At most, one layer may be in a patch for each type t ∈ T ,
which means

∀lrjtj , l
rk
tk

∈ p(ix,iy) : j ̸= k ⇒ tj ̸= tk . (11)

The set P containing all patches is defined by

P = {p(ix,iy)}(ix,iy)∈Z×Z . (12a)

Given a patch p ∈ P , the index set for this patch Ip ⊂ T ,
containing all types for which a layer is available in p, is
defined by

Ip = {t ∈ T : ∃lrt ∈ p} . (13)

Finally, an APGM g ∈ G is a set containing patches. Each
index has at most one patch in a grid map. The grid map g
and the set G are formally given by

g ⊂ P and G = 2P . (14)

Given a grid map g ∈ G, the index set for this grid map
Ig ⊂ Z × Z, containing all indices for which a patch is
available in g, is defined by

Ig = {(ix, iy) ∈ Z× Z : ∃p(ix,iy) ∈ g} . (15)

To reference a patch or a cell to a specific area in the
environment, the edge length of patches and a geodetic
reference of the grid map must be specified. Keeping them
constant during execution simplifies the fusion process. In
our case, the grid map is referenced to the UTM [19] origin.
Given the patch index (ix, iy), the edge length of patches
e ∈ R and the grid map g with reference dg ∈ R2, the
reference of a patch dp(ix,iy)

∈ R2 can be calculated by

dp(ix,iy)
= dg +

[
e · ix e · iy

]T
. (16)



Subsequently, the reference dct
(a,b)

∈ R2 of a cell ct(a,b) ∈
lrt ∈ p within the patch p is given by

dct
(a,b)

= dp + e/2r
[
a b

]T
. (17)

B. Fusion Framework
Since the cell resolution is dynamic and, thus, non-

uniformly distributed, the APGM requires a specific fusion
process. Therefore, generic operators are proposed in the
following. Depending on the task, the operator processing
the cell content must be specified separately. The following
definition can provide equally sized layers to this fusion
operator using a resampling function. In general, resampling
does not necessarily require a memory reallocation; altering
the access to the underlying data can be faster in some cases.
Given a required resolution step rreq ∈ N, the fusion yields a
layer with the respective resolution if there is a layer with at
least the required resolution. Otherwise, the highest available
resolution is used instead.

With a resampling function R : L×N → L, and the type-
specific cell fusion operator ft : Lt × . . . × Lt → Lt, and
a set of n ∈ N layers Sl the layer fusion function Flayer :
Lt × . . .× Lt → Lt is defined by

Flayer(Sl) =
{

ft
(
{R (lrt , rfused)}lrt∈Sl

)}
(18)

with rfused = min (rreq,max ({r ∈ N : ∃lrt ∈ Sl})). Exam-
ples for R and ft are given in the next section. Next, given
a set of patches Sp, the patch fusion function Fpatch :
P × . . .× P → P is defined by

Fpatch(Sp) =

Flayer(Sl,t) : t ∈
⋃

p∈Sp

Ip

 (19)

with Sl,t = {lrt : ∀p ∈ Sp, ∃lrt ∈ p} containing the layer of
type t of all patches. Finally, given a set of grid maps Sg ,
the grid map fusion function Fgrid : G × . . . × G → G is
defined by

Fgrid(Sg) =

Fpatch(S(ix,iy)) : (ix, iy) ∈
⋃

g∈Sg

Ig

 , (20)

where S(ix,iy) = {p(ix,iy) : ∀g ∈ Sg, ∃p(ix,iy) ∈ g} contains
all available patches at index (ix, iy).

Different cell resolutions and the availability of layers
and patches can be considered with the described structure
and fusion functions. With this, the APGM can implement
dynamic, external requirements specifying those values. For
example, the authors of [11] propose a method to provide
such information depending on the current situation (cf.
Section II). As shown in Section V, compared to having static
grid and cell layouts, the total amount of cells is reduced by
realizing such requirements. Thus, overall memory usage can
be improved. If data are transmitted over links with limited
bandwidths [10], the allocated memory size can directly
reduce latency and, thus, is of particular importance. The
APGM is exceptionally well-suited for setups as proposed
in [10] since sensor FOVs are permanently limited to certain
directions [12].
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Fig. 4. The process of splitting and merging cells is illustrated. For this,
the DST information of a cell is transformed into the measurement space
using the inverse measurement model. In the case of lidar sensors, the
measurement space is a point cloud (red dots). After fusing the data in
the measurement space, the result is transformed into the DST space.

C. Adaptive Resolution and Layer Resampling
In this section, we derive a formalism that allows the

implementation of the resampling function R required by
the previous section. As mentioned above, only point cloud
measurements, e.g., from lidar sensors, are considered here;
And an in-depth definition for camera semantic label with
an arbitrary amount of semantic hypotheses is subject to
future work. As described in this section, the idea of merging
and splitting cells is exemplarily visualized in Fig. 4. Given
n ∈ N cells C = {c1, . . . , cn}, ci ∈ Cocc, and a measurement
as a set of points M , the BBA for Ω = {O,F} representing
occupation and free space of each cell can be calculated
using an approach proposed by [5]. For data consistency, it
is crucial that merging these cells yields the same result as
calculating the BBA for a merged cell directly. Analogously,
the same applies when cells are split. As shown in Fig. 4,
when cells are merged, a free cell does not contradict with
occupied cells. Hence, as shown in the example in (5), the
Dempster-Shafer rule of combination is not suited for this
task. Given Mci as the subset of points p ∈ M located within
a specific cell ci ∈ C, the evidence of occupancy for this cell
mci(O) is defined by

mci(O) = 1−
∏

p∈Mci

Pr(p ̸→ O, ci) , (21)

where Pr(p ̸→ O, ci) is the probability, that p is not relevant
for the occupancy hypothesis of cell ci [5]. Here, (21)
is called the grid measurement model. Next, the merged
occupancy evidence mc̃(O) for the merged grid cell c̃ is
calculated as

mc̃(O) = 1−
∏
c∈C

(1−mc(O)) (22a)

= 1−
∏
c∈C

∏
p∈Mc

Pr(p ̸→ O, c) (22b)

= 1−
∏

p∈Mc̃

Pr(p ̸→ O, c) , (22c)

where, given the spatial proximity, it is assumed that the
sensor measurement model Pr(c | p) is cell invariant. Gener-
ally speaking, merging cells using (22) fuses the information



(a) Parking Lot

Parking Lot Driving

cell size:
10 cm× 10 cm

cell size:
20 cm× 20 cm

(b) Comparison (c) Driving

Fig. 5. Three examples of the APGM during the evaluation scenario are shown. Each image shows an area of approx. 200m × 200m with the patch
division of 12.8m in orange and the vehicle position in red. (a) shows the APGM at the parking lot. It can be seen that the required horizon of 20m
is realized. (c) shows the APGM while driving in an urban area. Empty patches within the horizon show that patches are successfully removed if no
measurements are available. For a direct comparison, (b) shows the occupancy layers of a single patch from both situations, respectively, in more detail.
The parking lot layer shows more details due to the increased cell resolution.

in the measurement space using the inverse of the grid
measurement model (21). Without further information about
the original point distribution, the process of merging in (22)
can only be inverted by distributing the probability Pr(p ̸→
O, c) evenly over the cells. Hence, the occupancy evidence
for the cells ci after splitting is given by

mci(O) = 1−

 ∏
p∈M

Pr(p ̸→ O, ci)

1/n

. (23)

Depending on the modeling of free space, it must be
considered separately. With the approach of [3], the measure-
ment model only considers free space in non-occupied cells.
For this, (22) and (23) are sufficient to process occupied cells.
In contrast, the authors of [5] propose determining free space
evidence in occupied cells. Here, a model-specific update
considering free space masses is additionally required. In
the case of unoccupied cells, standard fusion operations can
be used for merging cells since the free space is considered
solely. Splitting free cells uses a respective inverse fusion
operation. For example, when median fusion is used for
merging cells, splitting can be realized by assigning the value
of the original cell to the newly created cells.

V. EXPERIMENTS
This section first describes the scenario used to compare

our approach to others. Afterward, example images of the
APGM are given for different points in the scenario. Finally,
the results are presented and discussed, leading to recom-
mendations for using the APGM.

A. Evaluation Scenario

For evaluation purposes, a reference scenario is defined in
this section. In the scenario, an autonomous vehicle starts
from a parking lot.

The first task is to leave the parking lot with a maximum
speed of 15 km/h and without any topology information

available. Thus, the surrounding environment must be per-
ceived using onboard sensors only. For this, lidar sensors are
used since they are well-suited for unstructured environment
perception. The cell size of a grid map is selected to be 10 cm
at most. Due to the low speed, a horizon of 20m is assumed
to be sufficient. Fig. 5a shows an image of the APGM for
this part of the scenario.

When leaving the parking lot, the vehicle enters road traf-
fic in an urban environment. Since road maps are available,
grid map information is mainly used for collision avoidance.
Therefore, the cell resolution should approximately reflect
the lidar resolution with a lower bound of 20 cm. The
horizon must be at least 100m, corresponding to approx.
7 s of driving with 50 km/h. Additionally, a front-facing
camera must be used since curbs and road markings are
hard to detect with lidars only. However, ground projection
errors of camera information quickly increase with increasing
distance. Thus, the required horizon for camera semantic
information is only 40m, which still allows the vehicle to
react correctly on detections of curbs and road markings.
Two exemplary images of the vehicle leaving the parking
lot and driving on the road are shown in Fig. 5a and 5c,
respectively.

Last, the vehicle enters another parking lot, and the
scenario ends with the vehicle parked. For this part, the same
grid map requirements as for the parking before are used.

B. Evaluation Setup

The vehicle used for evaluation is an autonomous ve-
hicle with multiple lidars and cameras. As required, the
360◦ FOV are covered by two lidars (Hesai Pandar 64).
Additionally, a front-facing 3MP camera with a seman-
tic segmentation module is available. Lidar information is
encoded as occupancy measurement represented by a two
dimensional BBA per cell with T = {O,F}. Camera
information is encoded as semantic measurement repre-
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Fig. 6. Here, the amount of cells of the APGM during the evaluation scenario is shown. The upper plot illustrates the number of cells for occupancy
measurements of both lidars (red and blue) and the semantic measurement of the camera (green). Additionally, the constant amount of cells of the reference
approach [8] is shown (dashed red). Dashed yellow lines mark the times of requirement changes. In the middle, the number of occupancy (red) and
semantic (green) cells are plotted after the fusion step. The lower graph shows the required horizon distance, and the background further describes the
current situation. For illustration reasons, the number of cells for the approach of [9] is not shown. In comparison, the amount of cells equals ours while
parking; however, it is at least four times higher while driving on the road.

sented by a four-dimensional BBA per cell with T =
{Road,Marking,Blocked, Unknown}.

Our approach is compared to the approaches of [8]
and [9]. The comparison comprises the number of cells
and the required memory size of each approach. For this
comparison, the ”non-uniform [20m:60m:100m]” setting
from [8] is the best of the presented settings which fits the
requirements and is, thus, used as a reference. The APGM
is configured to match the same cell resolution and horizon
specifications. Since the [8] also estimates velocities, a fair
comparison of run times is impossible. However, average
fusion execution times are determined for the APGM as a
reference. The evaluation was run on a computer containing
an ADM RyzenTM ThreadripperTM 3970X CPU and 64GB of
DDR4 RAM.

C. Results

The number of cells for each layer and the required hori-
zon of the evaluation run is plotted in Fig 6. For comparison,
the constant amount of cells required for the approach of [8]
is shown as a reference. It shall be mentioned that the amount
of cells is required per measurement grid; thus, values for the
APGMs are separately compared to the reference. However,
due to the lack of resolution changes, the number of cells for
the approach of [9] are equal to ours while parking and at
least four times higher than ours while on roads. For lucidity
reasons, they are not added to the plot. The average fusion
execution times for the APGM using eight threads are 1.8ms
and 2.6ms for the parking and on roads, respectively.

As shown in Fig. 5 and 6, our approach can realize external
requirements, including horizon distances, cell resolutions,
and data availability. Due to the lower required cell reso-
lution, the amount of cells is not increasing proportionally
with the horizon distance, e.g., when entering the road. The
number of occupancy cells in the fused grid map is generally
higher than the amounts for a single lidar measurement grid.
This is a result of the partly overlapping FOVs of both sen-
sors. Over the whole scenario, the amount of occupancy grid
cells is significantly lower than the reference number of [8].
On average, the fused grid has 243k and 345k occupancy
cells in the parking lot and on the road, respectively, and
88k semantic cells on the road. Thus, the memory efficiency
is improved by a factor of 7.9 in the parking lot and 3.7
on the road. The amount of patches of [9] is equal to the
APGM. However, when driving in an urban situation, their
cell resolution and the number of cells is higher, and each
cell allocates more memory. Hence, the memory efficiency
is improved by a factor ≥ 3.0 while parking and ≥ 8.0 while
driving on the road.

Further, an example of our proposed approach for resolu-
tion resampling compared to DST-RC resampling is shown
in Fig. 7. Occupied areas tend to shrink with the DST-
RC due to conflicts with the surrounding free space. For
the 8 × 8 merging, the DST-RC resampling loses track of
occupied areas. This effect could lead to collisions when
driving in tight spaces. In contrast, our approach successfully
keeps cells occupied when any of the merged cells was
occupied before. Additionally, the 2 × 2 merge using our
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Fig. 7. A visual example of our proposed resampling approach compared
to the DST-RC is shown. In the middle, an occupancy layer with a cell size
of 10 cm× 10 cm prior to resamping is displayed as reference. On the left
and right, the results of merging 2 × 2 and 8 × 8 cells with the DST-RC
and our resampling method are depicted, respectively.

approach preserves the uncertainty information of cells,
where the DST-RC method delivers overly certain free space
estimations. This effect can be seen, in the lower right of the
2× 2 merge images in Fig. 7.

Summarizing the results, the APGM can transfer require-
ment facilitation into improved memory consumption and
is, thus, more efficient than other approaches. Additionally,
when using one of the compared approaches, a trade-off
decision between different situations has to be made, whereas
our approach performs best in all situations. Given the short
fusion execution times, our approach allows high update
rates of over 100Hz; thus, multiple sensors can be used
together in real-time. The results also show that the dedicated
consideration of cell resampling is essential, and standard
fusion operations, like the DST-RC, cannot be used for
adaptive resolution processing.

VI. CONCLUSION

In this work, we have proposed the Adaptive Patched Grid
Map (APGM), which models the unstructured environment
depending on dynamically changing situational requirements.
This is enabled by our new fusion framework, which allows
using Dempster-Shafer theory of evidence (DST) fusion
operators on cell level. It considers various cell resolutions
by resampling, i.e., merging and splitting cells. Our proposed
spatial cell fusion fills the gap of available DST fusion
operators for the resulting resampling requirements.

We showed the effectiveness of our approach using real-
world data recorded from an autonomous vehicle. The
APGM significantly improved memory efficiency compared
to other approaches while still fulfilling all situational re-
quirements. At the same time, low execution times en-
able high update rates. Thus, our approach contributes to
situation-aware adaptive perception methods, allowing for
resource savings.

For future work, we plan to add an adaptive velocity
estimation and the consideration of sensor trustworthiness.
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