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Pedestrian Environment Model for Automated Driving

Adrian Holzbock1, Alexander Tsaregorodtsev1, and Vasileios Belagiannis2

Abstract— Besides interacting correctly with other vehicles,
automated vehicles should also be able to react in a safe manner
to vulnerable road users like pedestrians or cyclists. For a
safe interaction between pedestrians and automated vehicles,
the vehicle must be able to interpret the pedestrian’s behavior.
Common environment models do not contain information like
body poses used to understand the pedestrian’s intent. In this
work, we propose an environment model that includes the
position of the pedestrians as well as their pose information.
We only use images from a monocular camera and the vehicle’s
localization data as input to our pedestrian environment model.
We extract the skeletal information with a neural network
human pose estimator from the image. Furthermore, we track
the skeletons with a simple tracking algorithm based on the
Hungarian algorithm and an ego-motion compensation. To
obtain the 3D information of the position, we aggregate the
data from consecutive frames in conjunction with the vehicle
position. We demonstrate our pedestrian environment model on
data generated with the CARLA simulator and the nuScenes
dataset. Overall, we reach a relative position error of around
16% on both datasets.

I. INTRODUCTION

In recent years, perception [1] and planning algorithms [2]
made major contributions to automated driving. To safely
navigate, the vehicle has to fully recognize the surrounding
environment. This can be done with different environment
models like grid maps [3] and target lists [4]. Existing envi-
ronment models are designed to display the location of other
traffic participants like cars or pedestrians on the map and
also show the driveable area but neglect the differing char-
acteristics of pedestrians. Unlike cars, pedestrians usually
communicate with other traffic participants by gestures, e.g.,
waving through a vehicle at a crosswalk or a police officer
regulating the traffic [5]. In current environment models,
important information for adequate and safe communication
between the automated vehicle and the pedestrian, like poses,
is missing. Therefore, we propose an environment model that
contains both the pedestrian’s position as well as its pose,
as shown in Fig. 1. This enables the execution of gesture
recognition [6], human behavior understanding [7], or body
pose forecasting [8] on our pedestrian environment model to
better address the characteristics of pedestrians.
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Fig. 1: Pedestrian environment model visualization. Pedes-
trians are not only described by their position (displayed as
a red dot) but also by their pose (shown as blue skeletons).
The camera symbol illustrates the ego vehicle.

Common approaches to model the vehicle’s environment
are grid maps or track lists from multi-object tracking
(MOT) [9]. Grid maps can be used to describe not only
static environments [10] but also surroundings with dynamic
objects [11] and can even include the object’s type [3]. In
MOT, the objects detected in the current frame are associated
with objects from earlier frames to get their position and
motion data. Bewley et al. [12] propose a simple algorithm
for MOT in the 2D image plane. Other methods enable
MOT in 3D space with lidar data [13] or even improve
the performance by fusing lidar and camera data [14]. Both
grid maps and track lists do not provide information about
the pedestrian’s pose. Our proposed pedestrian environment
model includes, besides the pedestrian’s position, also its
pose in form of the human skeleton.

Our approach only needs data from a monocular camera
sensor as well as a self-localization system to generate the
pedestrian environment model. The method consists of three
steps, namely body skeleton extraction, person tracking, and
position estimation. During skeleton extraction, we extract
2D skeletons in pixel coordinates from each person visible
in the image. For pose extraction, we use a pre-trained deep
neural network for 2D body pose estimation. In the second
step, we assign the extracted skeletons from the current frame
to skeletons from previous frames and accumulate the pedes-
trians’ pose information over time. Before the tracking step,
we apply an ego-motion compensation algorithm to obtain
more precise assignments during the tracking. To determine
the 3D position of the person in a global coordinate system,
we use the skeletal information of two consecutive frames
and the self-localization data. We evaluate our pedestrian



environment model on a dataset generated by CARLA [15]
and on the mini-set-split of the nuScenes dataset [16]. Our
approach reaches promising performance in the position
estimation of pedestrians for both datasets. To the best of
our knowledge, we are the first to provide an environment
model for pedestrians to improve the interaction modeling
with automated vehicles.

II. RELATED WORK

There are two common approaches to describe the au-
tomated vehicle’s environment: Grid maps and target lists
generated from multi-object tracking.

A. Grid Maps

In classical occupancy grid maps [10], the vehicle’s sur-
rounding area is divided into single equally sized cells that
can be free or occupied by another object. The cell states
of the grid map can be updated with new measurements
resulting in a measurement grid map. Therefore, an inverse
sensor model processes the measurements and assigns an
occupancy probability to the cell [17]. Occupancy grid maps
describe static environments but do not consider dynamic
objects, which are common in automated driving. Dynamic
occupancy grid maps include, besides the occupancy, also
a velocity for the dynamic object. Tanzmeister et al. [18]
model dynamic elements in the grid map with particles.
Schreiber et al. [19] apply recurrent neural networks to
predict a dynamic occupancy grid map from measurement
grids with an ego-motion compensation. An extension [3]
uses raw lidar point clouds as input and predicts additional
semantic labels for the cells. While grid maps can provide
information about free space for driving and other traffic
participant attributes, like orientation, velocity, and type, they
never included pedestrian body pose data. In contrast, the
proposed pedestrian environment model can provide those
details that are important for the communication between
automated vehicles and pedestrians.

B. Multi-Object Tracking

Multi-object tracking (MOT) delivers a track list of the
different objects’ locations in the vehicle’s surroundings. We
can divide the MOT into 2D tracking in the image plane and
3D tracking. A lightweight tracking algorithm in the image
plane is the intersection over union tracker [20], where the
association is done with the intersection over union (IoU)
between two frames. SORT [12] improves the simple IoU
tracker by propagating the labels with the Kalman Filter [21]
to the next frame and resolves the assignment with the
Hungarian Algorithm [22]. Instead of using the IoU as cost
for the assignment, DeepSORT [23] takes the Mahalanobis
distance and a feature vector produced from a pre-trained
neural network. Using lidar data as a base for the MOT
enables 3D MOT. Liang and Meyer [13] introduce NEBP,
which works with lidar data and complements belief prop-
agation with graph neural networks. The fusion of multiple
sensors like cameras and lidars is proposed to improve the
MOT performance. EagerMOT [24] fuses detections from

2D and 3D sensors and updates the tracks depending on the
available detection information. TrackFormer [25] combines
the feature extraction and MOT in one neural network
making separate object detectors unnecessary. The presented
MOT methods track objects over time and provide a track
list with other traffic participants for the planning of the
automated vehicle. Our pedestrian environment model also
tracks the pedestrians as the presented 2D approaches in the
image plane but provides additional 3D world positions and
skeletal information.

III. METHOD

In the following section, we describe our method to
generate a pedestrian environment model from the image of a
monocular camera and the vehicle’s self-localization system.

A. Method Overview

We aim to generate a pedestrian environment model by
utilizing RGB images from a monocular camera sensor and
the data of the vehicle’s self-localization system. Finally,
our environment model contains, besides the pedestrians’
position in world coordinates, also their pose. The proposed
method consists of three steps, visualized in Fig. 2. In the
first step (see Sec. III-B), the pedestrian’s skeletons and
bounding boxes are extracted from the camera image using
a neural network. The pedestrian’s bounding boxes are then
used in the second step (presented in Sec. III-C) to associate
the detected pedestrians of the current time step with the
detections from the last time step. To also obtain their
position in the world coordinate frame, we calculate the
position in the third step (described in Sec. III-D) based on
the keypoints and the vehicle’s self-localization information.
Finally, we get the pose and the position in the world
coordinate system of all pedestrians located in the camera’s
field of view.

B. Skeleton Extraction

The pose information of the pedestrians relies only on the
camera images. To extract the keypoints, we use CID [26],
a neural network pose estimator pre-trained on the COCO
dataset [27]. CID combines pedestrian detection and keypoint
extraction in one neural network, which enables a constant
execution time independent of the number of pedestrians.
In contrast, the execution time using two separated neu-
ral networks, one for pedestrian detection and another for
keypoint extraction, highly correlates with the number of
pedestrians. Also, CID makes the keypoint grouping to a
single pedestrian unnecessary because it predicts for each
pedestrian all keypoints in an own heatmap. CID delivers
a skeleton S2D,t = {k1,t, . . . ,ki,t, . . . ,k17,t} at time step
t that is described by the 2D pixel coordinates for the 17
keypoints ki,t = [u, v] for all m pedestrians in an image.
Additionally, CID returns a detection probability vector
Pt = {p1,t, . . . , pi,t, . . . , p17,t} with a detection probability
pi,t ∈ R1 for each keypoint. After keypoint extraction,
the skeleton S2D,t is used to generate a 2D bounding box
bt = {S2D,t,umin , S2D,t,vmin , S2D,t,umax , S2D,t,vmax}, which is
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Fig. 2: Overview of the proposed method to generate the pedestrian environment model. First, we extract from the image
sequence the 2D skeletons S2D,t (orange skeleton) with a neural network. Then, we associate the skeletons from the current
time step S2D,t with the track list from the previous time step Tt−1 to get the updated track list Tt (sequence of blue
skeletons). Finally, we estimate the pedestrians’ 3D position in the world coordinate system Lt,r,f (red dot).

utilized in the pedestrian tracking in Sec. III-C. After this
step, each pedestrian in the image is defined by a 2D skeleton
S2D,t, a detection probability Pt, and a bounding box bt.

C. Person Tracking

To reconstruct temporal dependencies, the skeletons of the
current time step must be associated with skeletons from
earlier frames. In this step, we do not have any information
about the distance to the pedestrian. Therefore, we use a
simple tracking algorithm in the 2D image plane. In addition
to the pedestrians’ motion, the ego-motion of the vehicle
can also lead to object shifts between the image frames. As
we assume that pedestrian recognition is only necessary for
urban traffic, we expect a speed limit of 50 km/h. Therefore,
we neglect the shift between image frames due to the ego
translation, as at this speed, an object’s location shifted only
by the perspective change still overlaps in two consecutive
frames. We focus on the compensation of the ego vehicle’s
rotation (yaw), which can lead to huge perspective shifts
between image frames. For the yaw (Ψ) compensation, we
use the change of Ψ between two time steps ∆Ψ from the
ego localization system, the aperture angle of the camera α,
and the width of the image w. The yaw compensation of the
2D skeleton S2D,t and the bounding boxes bt only affects the
u-value of the pixel coordinate [u, v] and can be expressed
as follows:

ucomp = u− ∆Ψ

α
∗ w. (1)

During pedestrian tracking, we hold n pedestrian tracks
Tt−1 = {T0,t−1, . . . , Tn,t−1}, where each track T contains
bounding boxes b as well as 2D skeletons S2D from the
last time steps. Before the association between the new
pedestrians and the tracks, we compensate the track data
with Eq. 1. Then, we calculate the generalized intersection
over union (GIoU) [28] between the pedestrians’ bounding
boxes bt and the tracks’ last bounding boxes bt−1. If a
pedestrian from the current time step has no intersection with
an existing track, we set up a new track for this pedestrian
and do not consider them in the association. Besides the new
pedestrians, we exclude tracks from the association that do
not overlap with new pedestrians and remove them after three

failed association attempts. By excluding new pedestrians
and tracks with missing detections during the association,
the number of new pedestrians m and tracks n is equal.
We apply the Hungarian algorithm [22] to assign one person
to each track such that the association cost c ∈ Rm×n is
minimized as follows

min

m−1∑
j=0

n−1∑
k=0

cj,kaj,k, (2)

where the cost cj,k is the negative GIoU and aj,k = 1,
if the pedestrian j is associated to track k. The outcome of
the tracking is an updated list of tracks Tt improved with
the pedestrians’ states of the current time step containing
the ego-motion compensated skeletons S2D,t and bounding
boxes bt in pixel coordinates.

D. World Position Estimation

Besides the pose, the pedestrian’s position related to the
ego vehicle includes essential information. The image from
the monocular camera provides a high angular resolution
which can be used to determine the pedestrian’s direction. In
contrast, the details provided by the camera are insufficient to
calculate the distance between the pedestrian and the vehicle.
We propose a two-step method to identify the pedestrian’s
world position using the vehicle’s self-localization and two
consecutive image frames. First, we estimate an initial po-
sition by using geometric dependencies between the frames.
Following, we refine the position using the pedestrian’s
image height. An overview of our world position estimation
is given in Algorithm 1.

a) Initial Estimation: In the first step, we determine the
initial world location of the pedestrian by using geometric
dependencies. Therefore, we convert the 2D skeleton S2D,t

from pixel coordinates into normalized 3D vectors in the
world coordinate system. The 3D vector for a keypoint
defines a ray in the 3D space on which the keypoint is
located, while the distance is unknown. The conversion
of a single 2D keypoint ki,t = [u, v, 1]T of time step t
to a normalized 3D direction vector in world coordinates



di,t ∈ R3 can be expressed as follows

di,t = Rext
Kintki,t

||Kintki,t||
. (3)

Here, Kint ∈ R3×3 is the intrinsic camera calibration matrix
and Rext ∈ R3×3 the extrinsic camera rotation matrix. By
converting the 2D skeleton S2D,t, we obtain normalized
3D direction vectors D3D,t = {d1,t, . . . ,di,t, . . . ,d17,t}
for each keypoint. To determine the distance of a specific
keypoint, we calculate the closest point between the rays of
two consecutive frames by using the 3D direction vector di,t

and the vehicle’s ego position ot. From both, we use the data
of the current time step t and the previous time step t−1. The
closest point on the ray of the current time step ot + li,tdi,t

and the previous time step ot−1 + li,t−1di,t−1 is defined by
the following equation:

ot + li,tdi,t + ls,i(di,t−1 ×di,t) = ot−1 + li,t−1di,t−1. (4)

li,t and li,t−1 define the distance from the origin ot and
ot−1 to the closest point on the corresponding ray, while
ls,i represents the shortest distance between the rays. As the
final estimate for the keypoint k3D,i,t, we use the midpoint
between the two closest points defined by

k3D,i,t =
ot + li,tdi,t + ot−1 + li,t−1di,t−1

2
, (5)

where li,t and li,t−1 are obtained by solving Eq. 4. We
combine the 3D keypoints k3D,i,t to a 3D skeleton S3D,t =
{k3D,1,t, . . . ,k3D,i,t, . . . ,k3D,17,t}. To get the pedestrian’s
position in world coordinates, we calculate the mean of
all 3D keypoints k3D,i,t. Assuming that the distance to
keypoints k3D,i,t with a low detection probability pi,t is
inaccurate, we exclude 30% of the keypoints with the lowest
detection probability in the calculation of the pedestrian’s
world position. Finally, with the geometric dependencies,
we get an initial estimation of the person’s location Lt =
[x, y, z]T in the world coordinate system.

b) Position Refinement: Different factors like pedestri-
ans’ motion, inaccuracies in the pose estimation network, or
a standing ego vehicle can reduce the accuracy of the pedes-
trian’s initial position estimation Lt. In the second step, we
refine the distance and direction of the pedestrian’s position.
For the distance refinement, we re-project the bottom and
top point of the pedestrian to the image while we set the
bottom point to 0.0 m and the top point to 1.7 m, assuming
an average person’s height of 1.7 m. The re-projection of
a point in world coordinates to the image plane can be
conducted with the inverse intrinsic camera matrix K−1

int and
the inverse extrinsic camera matrix consisting of the rotation
matrix Rext and the translation vector t ∈ R3 with the
following equation:ur

vr
1

 = K−1
int

[
Rext t
0 1

]−1


x
y
z
1

 . (6)

We use the re-projected top and bottom point to determine
the person’s height hest in pixels with the initial estimated

distance. If the initially estimated distance corresponds to the
ground truth distance, the difference between the re-projected
hest and the original image height horig in pixels is zero.
During the distance refinement, we use the original and re-
projected height to calculate a scaling factor that re-scales
the distance between the pedestrian and the ego vehicle. The
refined distance lr is calculated as follows:

lr = l ∗
(
1 +

( hest

horig
− 1

)
∗ λ

)
. (7)

Here, l defines the initial distance estimation and λ is a
dynamic scaling factor. We use the refined distance lr to
update the person’s position. In addition to the person’s
distance from the camera sensor, we refine their direction.
For the direction refinement, we calculate the mean direction
of the 3D direction vector D3D,t and set this as the updated
direction.

To increase the accuracy, we repeat the refinement of the
distance and the direction 15 times and progressively reduce
the scaling factor λ = r + 5 for r ∈ [1, . . . , 15]. From
the position refinement, we get the improved pedestrian’s
position Lt,r, which we smooth with a Kalman filter [21]
based on a constant velocity model. The filtering eliminates
the influence of outliers and improves the position Lt,r,f .

Algorithm 1: Overview of the position estimation
Input: Current 2D keypoints ki,t, previous 2D

keypoints ki,t−1, current ego position ot,
previous ego position ot−1, intrinsic camera
matrix Kint, extrinsic rotation matrix Rext,
extrinsic translation vector t, number of
refinement steps s = 15, scaling factor
constant c = 5

Output: 3D pedestrian position Lt,r,f

/* Initial distance estimation */
Calculate direction vector di,t for ki,t with Eq. 3
Calculate 3D keypoint k3D,i,t with Eq. 4 and Eq. 5
Calculate persons location Lt as the mean of k3D,i,t

/* Distance Refinement */
for r = 0 to s do

Re-project persons height to image using Eq. 6
Refine distance with Eq. 7 and λ = r + c
Refine angle with the mean direction of k3D,i,t

end
Filter Lt,r with the Kalman Filter to get the final

position Lt,r,f

IV. EVALUATION

We evaluate our method on simulated and real-world
traffic scenarios. In the following, we explain the utilized
datasets, our experimental settings, and present the results.

A. Datasets

The experiments are conducted on a dataset generated
with the CARLA simulator [15] and the real-world dataset



nuScenes [16]. Both datasets contain diverse scenes, includ-
ing scenarios with crossing pedestrians in front of the car
and pedestrians on the sidewalk.

a) CARLA Dataset: We simulate different traffic scenes
with the CARLA simulator [15]. CARLA is an open-source
simulator for automated driving that supports different envi-
ronments and commonly used sensors in automated driving.
Furthermore, CARLA can generate matching labels for the
sensor data, e.g., bounding boxes, semantic segmentation
maps, depth maps, and even pedestrians’ skeletons. The
scenes in the simulator can be generated automatically with
vehicles driven by an autopilot and pedestrians controlled by
an artificial intelligence. We generate the sequences with a
simulation frequency of 10 Hz and place an RGB monocular
camera next to the rear-view mirror. As camera parameters,
we set the image resolution to 1600 × 900 pixels and the
opening angle to 64.5 degrees. In addition to the camera
image, we simulate the self-localization data and labels,
which contain 2D skeletons, 2D bounding boxes, and 3D
bounding boxes. We filter out labels that are either outside
the camera’s field of view or occluded by other objects. To
detect occlusions, we simulate a depth map and check if the
pedestrian is visible.

b) nuScenes Dataset: nuScenes [16] is a dataset for
automated driving collected in Boston and Singapore un-
der different environmental conditions. The dataset contains
data from the entire sensor suite of an automated vehicle,
including camera, lidar, radar, and localization data. Overall,
the dataset consists of 1000 manually selected scenes with
a length of 20 seconds labeled with 3D bounding boxes and
object class labels at a frequency of 2 Hz. To evaluate our
proposed method, we take the nuScenes mini-set-split, which
contains a subset of 10 sequences. From this subset, we use
the day scenes (Scenes: 61, 103, 533, 916, 655, 757, 796)
for the evaluation and exclude the remaining night scenes
as the used human pose estimator is not trained on night
view images. In the evaluation, we take the images from the
vehicle’s front camera, which have a resolution of 1600×900
pixels, an opening angle of 64.5 degrees, and a frame rate
of 12 Hz. Furthermore, we use the labels of all pedestrians
in the camera’s field of view and the self-localization system
data.

B. Experimental Settings

Following, we give an overview of our implementation1.
During the evaluation on the nuScenes dataset, we use the
CID [26] human pose estimation neural network to extract
the pedestrians’ skeletons from the images. The network
has an HRNet-W32 [29] as backbone and the parameters
are trained on the COCO keypoint dataset [27]. Due to the
domain gap between real images and the images simulated
with CARLA, we use the generated 2D skeletons to evaluate
on the CARLA dataset instead of extracting them with a
neural network. Further, using generated 2D skeletons makes

1Our code is publicly available at https://github.com/
holzbock/ped_env.

TABLE I: Evaluation results for our method on the CARLA
dataset. CARLA all is the mean result over all scenes, while
the other rows show the mean result of one scene.

Data Absolute Error
eabs in [m]

Relative Error
erel in [%]

# Pedes-
trians

CARLA all 9.123 16.85 12771
CARLA 0 11.970 18.54 963
CARLA 1 6.823 18.75 3161
CARLA 2 7.607 13.94 316
CARLA 3 11.922 18.74 3415
CARLA 4 7.649 12.82 459
CARLA 5 2.023 4.45 310
CARLA 6 9.112 16.84 201
CARLA 7 9.521 14.92 1642
CARLA 8 9.055 16.14 1942
CARLA 9 3.056 8.68 362

the evaluation independent of the pose estimator’s perfor-
mance. Our approach applies the 2D skeletons and the self-
localization data to create the pedestrian environment model.
In the evaluation, we report the absolute error in meters eabs
between the ground truth position and the predicted position
and the relative error erel to the ground truth distance. To
assign a ground truth label to a pedestrian in the environment
model, we first calculate the intersection over union between
the ground truth and predicted pedestrians in the image plane.
Then, we use the ground truth label with an intersection in
the image plane closest to the world coordinate system.

C. Results

We evaluate our method on simulated CARLA data and
nuScenes data with the described experimental settings.

a) CARLA Dataset: In Table I, we present the results
of our method on the simulated CARLA dataset, where the
mean distance to pedestrians is around 57 m. The first row
shows the overall error, which is in absolute numbers 9.123
m and relative to the ground truth distance 16.85%. The
scenes with the highest error are CARLA 1 and CARLA
3, where the vehicle is waiting at a red traffic light and
pedestrians are crossing in front of the vehicle. The best
results are reached in the scene CARLA 5. Here, the ego
vehicle is in motion and the pedestrians are crossing the street
at a greater distance to the sensor. Additionally, to the results
in Table I, we provide the distance-depending error between
the pedestrian and the ego vehicle in Fig. 3a. As displayed
in Fig. 3a, the error increases with a higher distance between
the pedestrian and the ego vehicle. Beginning at a distance
of 125 m, the error increases even further and seems very
noisy. A reason for the noise could be that fewer pedestrians
are visible at high distances to the sensor, therefore outliers
have a strong influence.

b) nuScenes Dataset: The results for the evaluation
on the nuScenes dataset are presented in Table II and
Fig. 3b. The mean distance between the ego vehicle and
the pedestrians in the nuScenes dataset is around 15 m. The
overall result on the nuScenes dataset for all selected scenes

https://github.com/holzbock/ped_env
https://github.com/holzbock/ped_env


TABLE II: Evaluation results for our method on nuScenes.
nuScenes all is the mean result over all scenes, while the
other rows show the mean result of one scene.

Data Absolute Error
eabs in [m]

Relative Error
erel in [%]

# Pedes-
trians

nuScenes all 2.524 15.66 194
nuScenes 61 3.032 18.75 29
nuScenes 103 4.232 20.10 25
nuScenes 553 1.809 13.21 96
nuScenes 655 3.129 16.01 4
nuScenes 757 0.000 0.00 0
nuScenes 796 9.270 62.21 1
nuScenes 916 2.579 15.33 39

0 25 50 75 100 125 150 175
Distance in [m]

0

20

40

60

Er
ro
ri
n
[m

]

0

200

400

600

#
Pe

de
st
ria

ns

(a) CARLA Simulated Dataset

0 5 10 15 20 25 30 35 40
Distance in [m]

0

1

2

3

4

5

Er
ro
ri
n
[m

]

0

10

20

30

40

50

#
Pe

de
st
ria

ns

(b) nuScenes Dataset

Fig. 3: Absolute error plotted over the distance between
vehicle and pedestrian for the CARLA dataset in the top
image and for the nuScenes dataset in the bottom image.

is given in the first row of Table II and is in absolute numbers
2.524 m and relative to the ground truth distance 15.66%. In
the scenes nuScenes 655, nuScenes 757, and nuScenes 796
almost no pedestrians are detected, which is why no further
conclusions are made here. The best performance is reached
on nuScenes 553, where the vehicle waits at an intersection
and pedestrians are crossing. The highest error occurs in
nuScenes 103, where the vehicle is driving through a street
and pedestrians walk on the sidewalk. As in the evaluation
of the synthetic data, we provide an overview of the error in
dependency on the distance between the pedestrian and the
ego vehicle in Fig. 3b. Here, we can see that we reach an
error below 2 m up to a distance of around 13 m. Afterward,
the error rises, but the number of detected pedestrians in
distances above 13 m decreases.

D. Ablation Study

The following section presents further investigations to
give a deeper insight into our approach. We evaluate the

influence of the refinement step, the effect of using multiple
points for the initial distance estimation, and measure the
run-time of the whole approach. The experiments in this
section are all performed on the nuScenes dataset to show
the influence of real data.

a) Distance Refinement: We use the refinement step to
improve the position accuracy, which can be inaccurate due
to noisy pose estimates or a standing ego vehicle. On the
nuScenes data, we reach an overall absolute error of 2.524 m
with the distance refinement step. By skipping the refinement
step and only using the initial position estimate, the error
increases to 6.601 m, representing a relative error of over
50%. The effect of the missing refinement step can especially
be seen in nuScenes 553, where the ego vehicle is standing
at a red traffic light. In this case, the refinement step can
improve the relative error from 73.93% to 13.21%.

b) Single Point Initial Distance: In the initial estima-
tion of the pedestrian’s position, we use an average of all
keypoints to determine the position. In this ablation study, we
only use the midpoint of the pedestrian to calculate the initial
pedestrian’s position. By using all keypoints for the initial
estimation, we can improve the error from 2.562 m when
using only the midpoint to 2.524 m when using all keypoints.
The difference between the midpoint and all keypoints is
even higher when the refinement step is skipped. Then, using
all keypoints for the initial estimate gives an overall error of
6.601 m and with only the midpoint, the error increases to
7.890 m. This shows that using all keypoints for the initial
distance estimate is beneficial, as outliers can be suppressed.

c) Method Run-Time: In automated driving, compu-
tational overhead plays a significant role due to limited
resources. Therefore, we also measure the run-time of our
approach. For a more meaningful result, we measure the run-
time on the nuScenes dataset 5 times and calculate the mean.
We determine the run-time of our approach implemented in
Python on a workstation with an AMD Threadripper 3960x,
64 GB RAM, and an Nvidia GeForce RTX 3090. The pose
estimation network is executed with PyTorch [30] on the
GPU, while the remaining code runs on the CPU. The overall
mean run-time of our approach is 40.54 ms, of which the
neural network for the pose estimation causes 39.94 ms.
Our simple tracking approach takes 0.35 ms and the position
calculation needs 0.29 ms per pedestrian. The neural network
and the tracking have a constant run-time independent of the
number of detected pedestrians. In contrast, the run-time of
the position calculation depends on the number of pedestrians
and, on average, needs 0.29 ms for every detected pedestrian.

E. Result Discussion

Our experiments show that the proposed method can reach
promising results in generating a pedestrian environment
model. We reach a distance error below 2 m close to
the ego vehicle by only using the data from a monocular
camera and the self-localization system. Compared to the
simulated dataset, the nuScenes dataset has fewer samples
during evaluation. This is caused, on the one hand, due the
fact that we can evaluate only every sixth frame because of



the sparse labels and, on the other hand, by the performance
of the human pose estimator. The human pose estimator only
detects pedestrians up to a distance of around 25 m, which
can also be seen in Fig. 3b. The fact that the pose estimation
network detects pedestrians only in a range of up to 25 m also
causes the difference in the overall absolute error between the
simulated dataset and the nuScenes dataset, while the relative
error is equal for both datasets. Furthermore, on the simulated
dataset, the lowest performance is reached on a scene where
the vehicle is waiting at a red traffic light where pedestrians
are crossing. In this situation, on the nuScenes dataset, the
best performance is reached. Erroneous assignments cause
this during the tracking of the pedestrians in the simulation
in cases pedestrians occlude further away pedestrians. This
does not happen in real scenarios because of the limited
performance of the human pose estimator.

V. CONCLUSIONS

This work presented a pedestrian environment model
generated only by RGB monocular camera images and self-
localization data. In addition to the positional information,
the proposed pedestrian environment model also contains the
human pose, which enables downstream tasks like human
gesture recognition and human behavior understanding. Our
approach consists of three different steps. In the first step,
we extract the human skeletons from the RGB image. In
the next step, we compensate the ego-motion and associate
the skeletons from the current time step to earlier time
steps. Lastly, we determine the pedestrian’s position in world
coordinates. Therefore, we use the self-localization data and
the skeletons from two consecutive time steps. Further, we
refine the position by re-projecting the pedestrian’s height to
the image. We evaluate our pedestrian environment model
on a synthetic dataset generated with the CARLA simulator,
as well as the real-world dataset nuScenes.

REFERENCES

[1] D. Feng, et al., “Deep multi-modal object detection and semantic seg-
mentation for autonomous driving: Datasets, methods, and challenges,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22,
no. 3, pp. 1341–1360, 2021.

[2] L. Peng, Y. Yan, J. Wang, D. Han, Y. Yao, and G. Yin, “Hierarchical
motion planning system with consideration of the dynamic lane-
changing behaviour,” in 2022 IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC), 2022, pp. 3455–3460.

[3] M. Schreiber, V. Belagiannis, C. Gläser, and K. Dietmayer, “A multi-
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