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= Why not use this class information for Track Classification?

Not only kinematic, but
also class information
needed

Higher automated
driving functions
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Existing Approaches for Track Classification

Implicit Method [1, 2] Explicit Method [3]
= Use only the kinematic features Raw Sensor Data d = Use external provided class
which are used by the information, e.g., by the detector

(kinematic) tracker = On-top classification based on a

Detector existing tracker

= Allow a full Bayesian problem

formulation often with a multi- . . |rformation
model approach Position
. Velocity Classification = - Can not use the classification
= + mathematically closed Orientation Class ¢ with Probabilty  information inside the tracker
= + profitable for the tracker and Lengnt Pleld)
classification

v _ .
= - computational demanding + computational cheap

= + Classification not limited to

= - characteristic kinematic Model . : :
kinematic properties

for every Class
Combine the explicit
- method with a random
finite-set tracker / LMB

[1] B. T. Vo and B. N. Vo, “Tracking, identification, and classification
with random finite sets,” Defense, Security, and Sensing, vol. 8745, p. 87450D, 2013.

[2] W.Yang, Z. Wang, Y. Fu, X. Pan, and X. Li, “Joint detection, tracking and [3]1 S. Haag, B. Duraisamy, W. Koch, and J. Dickmann, “Classification assisted tracking
classification of a manoeuvring target in the finite set statistics framework,” IET Signal for autonomous driving domain,” in IEEE Sensor Data Fusion: Trends, Solutions,
Processing, vol. 9, no. 1, pp. 10-20, 2015. Applications, 2018, pp. 1-8.
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Random Finite-Set Based Multi-Object Tracking with the

Labeled Multi-Bernoulli Filter

= Joint estimation of the number and state of the
objects with a random finite-set

= Labeled multi-Bernoulli (LMB) filter [4]:
approximation of the generalized labeled multi-
Bernoulli (GLMB) filter

= Important for this work:

Unambigious association between track and
measurement during the update

[4] S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, “The labeled multi-bernoulli filter,”
IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3246-3260, 2014.
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Combining Classification

Classification in form of a a-posteriori probability P(¢|d)for

class c and input data d

Based on Bayes [5]

= Product Rule @ If inputs are conditional
independent of the class,

fused ) _
classification classification 1 classification 2
A A A
L pi i
then o x
B B B
P2 Py P}
n

P(cldy, ... dy) o< P(e)* " ] Pc|d;)

i=1

= Sum Rule H more robust

P(cldy, ... dy) o< (1=n)P(c)+ Y P(c|d;)
i=1

[5] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-239, 1998.

Based on Subjective Logic [6, 7]

c ~ Cat(p).

= Second order probability with p ~ Dir(a).

= Paper[6] uses external classification info of the
form | f(d|c)|for the update

\ Difficult to estimate

- Presentation of a fusion operator for the
a-posteriori Probability P(c|d)

[6] ] L. Kaplan, M. Sensoy, S. Chakraborty, and G. De Mel, “Partial observable update for subjective
logic and its application for trust estimation,” Information Fusion, vol. 26, pp. 66—83, 2015.
[7] A. Josang, Subjective Logic. Cham: Springer International Publishing, 2016.
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Framework for Track Classifacation with RFS based Trackers
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Classifier Prediction

RFS Tracker

! Multi- Ob ect :

Discount old knowledge petecion ||

Tracker
Prediction

Tracks

Model Class changes [DZ?;;”HAssociaﬁonH

:' Multi-Object 1
State
A
Tracker | Kinematic
Update State

H
Tracker Kinematic | |

Class
istributio

Classifier | .
Update

H]T
H]—

N
-

Class
Estimation

Esmmahonl_:)[ State ]'

E Object .
H Class :
\

Track Classifier

Bayes Method

= Weigthed average between old estimation and
uniform distribution:

predicted old uniform
estimation estimation distribution
Y " Y

A A A

Py P 1/2

= 4 + (1-9)

B B B

P P2 1/ 2
N~ — N/

Pesq) = 6P(cs) + (1 — 8) =

= General: Markov Transition

Classifier
Prediction

Subjective Logic Method

= Use the trust discount [7] operator, i.e.,

c ~ Cat(p)
p ~ Dir(a)

predicted old
estimation estimation
S Y
A A
af’ ay
then approx. - 4
B B
a;r (o3
~— ~—
aq = d

[7] A. Josang, Subjective Logic. Cham: Springer International Publishing, 2016.
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Classifier Update

Update of one track with

the associated measurement

Bayes Method

Sum rule to combine estimations of the same
sensor of different time steps

RFS Tracker

Tracker
Prediction

; Multi-Objec ‘M ]h-ObJect ] I k AN
H i 1 ' ' Tracks H .
' Detecnon ; v v : State l I_th Standard
Object : Association Tracker | Kinematic Tracker Kinematic : .
E Detection Update E State 5 Esnmanon State : baS|S VeCtor
: : I— Classifier | fi, Class : Class
IS e S s M| |
: Update Distribution ’ Estimatio| Pnor
,,,,,,,,,,, i AL 4 [ — 4 4
¢ ~ Cat(p),
Track Classifier Prediction .
p ~ Dir(a).

1|__H 1 | _H 1

Sensor 1 —p» cldy —_—> cldy — - cldy,
® - ® - ®

Sensor 2 —» c|d% —_— c]d% —_— - c|d%
® ® ®

Sensor . —3|c|d} c|dy i) e |eldy
Class Estimation | ¢|d; clds cldg
N/ S —

Sum Rule

Subjective Logic Metho
If P(c;|d) =1 for some i,
then plci ~ Dir(a e

- The measured
class is certain

But in general P(¢;|d) = 1; € [0,1], > The measured
so pld ~ Z I; Dir(a + ;) class is uncertain

i

Reduce growing number of mixtures with a
moment matching approach - Paper
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Classifier Estimation
Prediction
{ Mult-Object { Mult-Object } mearasanas .
1 Detection E State ! ! Tracks |
i : : Y 3 : : ! '
Get a Slngle CIaSS for eaCh ! Object L3 association Tracker ! [ Kinematic | Tracker ' | Kinematic | |
E Detection J | Update :: State H Estimation ' State :
: : : : ! : :
traCk 5 ob E Classifier | | Class : Class : :
' ject | o 0 S Class
| Update | ! [Distribution) : Estimation '

Bayes Method

= Combine estimations of all sensors with the

product rule

1 il_l H 1
Sensor 1 —|c|d] cdy | - |cldg Y[
® ® =3 ¢ = arg max P(cr|a) = arg max S‘l
Cla Cla i
Sensor 2 —) c\d% i} c|d§ ﬂ) C|di
® ® ®
5 @ : @ : Product Rule
Sensor n —3p|c|d] | ——= |cld] |+ - [cld}
Class Estimation | ¢|d clds cldy
| S— | S— | S—

Track Classifier

Classifier
Prediction

Subjective Logic Method

= Marginalize p out

= Return the most probable class

= Return the most probable class

¢ = arg max P(c;|dy,...,dk)

Cg
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Evaluation General

= 5 classes: Car, Bike, Pedestrian, Truck, Unknown
. . —— Pedestriz
= Classes do not change in time S
- Bike
———  Truck
= Performance averaged over the track age EU“k"T‘?’"l
2o vehicle
= Classification performance evaluated with the /J
weighted averaged F1-Score ///
f",“r‘//
|

Association to ground truth

» Use association computed by the the GOSPA
[8] (a multi-object tracking) metric

[8] A. S. Rahmathullah, A. F. Garcia-Fernandez, and L. Svensson, “Generalized optimal sub-pattern
assignment metric,” in IEEE International Conference on Information Fusion, 2017, pp. 1-8.
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Evalutation Scenario Set-Up

Simulation
Single Object Tracking

= Association given — no
tracking needed

= Simulated detector with
classification output as a
sample from a Dirichlet

Distribution with Parameter:

True Class = ¢;

: [(ow) else.

b_ {h(igh)

Simulation

Multi-Object Tracking

= Software-in-the Loop (SIL)
simulator to simulate the
automated vehicle

= Simulate detector output with

fixed probilities

Real-World

Multi-Object Tracking

= Automated car with one
LiDAR sensor and three
RADAR sensors

= Manual labeled ground-truth
for the estimated tracks

Pedestrian
Car
Bike
Truck
Unknown

Ego vehicle
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Single-Object Tracking
Varying Detector Qualities

1_

0.8 —

Mean Fl-score

0.4 —

h=1.5 (

h=0.75

Subjective Logic
— Bayes

| | | | |
20 40 60 80 100

track age in time steps k

Key Points

= Fusion enhances the
classification
performance

= As expected in ideal
settings: Bayes
method superior

= But small difference
with good detectors
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Single-Object Tracking
Switching Detector Quality

1 - -. . h—0.2 Key Points
Subjective Logic /,_/f”_'f- = At time step 50:
— Bayes change in the detector
05 perff)rm'ance |
o = Subjective Logic
US} method better in the
— 0c | non-ideal setting
g —> more robust
L
= h=0.12
0.4
| | | | | | |
0 20 40 60 80 100 120

track age in time steps k
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Conclusion

= Framework for explicit track classification for random finite-set based
tracker

« computational cheap track classification
« works with different trackers

= Presentation and comparison of different classification fusion
methods

= All fusion methods enhance the classification performance compared
to the detector
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