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Intro: Training the AD stack layers



Theory-driven approaches

✓ Utilize existing theory on the subject of interest

(image mathematical transformations/filters).

➢Very often theory is inadequate or completely 
lacking.

✓ Strive to develop theory, if it doesn’t exist.

➢Developing problem-solving theory takes time.

Data-driven approaches

✓ Minimizes the reliance on existing theory

✓ Focus on building solutions directly from available data.

➢ Large amounts of data can be compiled relatively easy 
by suitable sensor setups.

However:

➢ State-of-the art data-driven methods (i.e. Machine 
Learning) are data hungry. 

➢ More often than not, there is a large variety of corner 
cases which require special care during data collection.

➢ Despite indicating a faster path towards a solution 
than developing theory, (annotated) data collection 
remains an intensely time-consuming and tedious 
process.

Synthetic data generation: Theory- vs Data- Driven



Creating artificial bad weather images from original 
images using ML

Annotating events in videos using ML

Two examples of data-driven dataset generation



Current research on AVs develops perception and decision mechanisms on a 
variety of sensor suites. → Different datasets required for each layer of the AD stack!

→ Cross-annotating AV perception/motion data even for a simple scenario can be extremely time consuming!

ML for AVs – What kind of data?

Most commonly included data for path planning:

➢ Set of trajectory points

➢ Topology/Map data

➢Traffic rules contextual data

Most commonly included sensors for perception:

➢ Lidar.

➢ Set of radar sensor(s).

➢ Set of RGB, stereo and/or RGB-D (depth) 
camera sensors.



ML for AVs - Required data sample



Simply augmenting an existing dataset is quite standard and can be done via 
classic Computer Vision tools including

✓ Geometric (perspective/affine/mirror/rotating) transformations.

✓ Blurring plus combinations of morphological filters.

✓ Color transfer between images via suitable of color spaces.

The above have been shown to be effective in improving performance of object 
detection algorithms, but only up to a point. 

Questions like how many data are required, or what are the limits of a resulting 
perception/decision algorithm trained on that data remain largely intractable.

Augmenting an Existing Image Dataset



Currently under exploration:

• Image translation techniques, particularly 
for the adverse weather conditions case
(e.g. via ΜUNIT-UNIT *).

• Utilization of segmented images
for relevant image generation.
Possible pipeline:
Image -> Segmented Image ->
Image synthesis via px2pixHD ** 

* (Multimodal) UNsupervised Image-to-image Translation

** This could also exploit the segmentation camera provided in many simulation environments

Augmenting an Existing Image Dataset



• Based on Generative Adversarial Networks.

• Training process can be expected to be unstable, unpredictable and time 
consuming.

• Required computational resources are highly intensive in terms of time and 
hardware.

• Resulting images can be of questionable

usability in terms of resolution

and image quality, especially in VRUs.

Image Generation Issues



• Lidar data?

• Radar data?

Is there a way to rationally augment – enrich respective datasets?

i. Maintaining data realism

ii. Preserving the soundness of the annotations

• (Open) questions like:

➢ Q1: How much and what kind of data can be considered satisfactory to train an 
algorithm on a specific scenario  or corner case?

➢ Q2: How much and what kinds of noise/uncertainty/variability can be filtered out and/or 
tolerated by an algorithm trained  on a specific dataset before it fails?

So, what about… 



• Simulation software offers a fully controllable environment where a large variety of the
parameters involved in an experiment can be pre-defined or arbitrarily tuned.

• Besides the ground truth, simulation software offers adjustable models for the entire sensor
suite of AVs, including lidar, radar and cameras.

• Collected data are readily annotated by the simulation’s contextual ground truth and
simulated scenario.

• Flexibility in scenario building and parameter tuning implies greater ease in considering data
collection pertaining to corner cases.

Simulated Data - Generation



• Simulations facilitate the benchmarking of designed algorithms
solutions by:

1) Being able to exactly replicate the original experiment and/or
scenario

2) Being able to include various sources and levels of
uncertainty/variability to the original experiment and/or
scenario, ranging from uncertainty in sensor measurements to
large deviations from the original scenario.

• Recall (open) questions Q1 and Q2.

Simulated Data - Utilization



We cannot claim that, in absolute terms, data generated from
simulations can replace real-world data

BUT

• They can greatly enhance incomplete real-world data

• Produce data for extreme, high-risk or rare events

• Provide 100% accurate goundtruth data (skipping the need
for the cumbersome task of data semantic annotation)

Conclusion



Consortium
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THANK YOU!!!
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