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Radars are here to stay, but need Al
to be a true alternative.
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Low- to High end models



Al-driven radar Is a must.
Delivering it first is a win.
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Radar Perception SDK
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Radar Perception SDK

Point Cloud

Low-level Data l
Segmentation

Processing

Calibration Early/Late
Fusion

SLAM/Odometry NCAP Scenes
Road User Free Road
Detection Estimation
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Radar Perception SDK
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Radar - camera sensor fusion with LIDAR supervision
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Radar - camera sensor fusion with LIDAR supervision
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We cannot put a LIDAR in every car -
but maybe it is enough to put it in one!
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INnput sensors: radar + camers
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Training sensor: LIDAK
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Output: LIDAR-lIke point cloud
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Common perception modules
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Additional perception modules

| Pre-trained Networks

| Ordinal Regression

LiDAR Supervision Signal

*  Pre-processing EB Concatenate layers / list

Depth Refinement Network
LN

Monocular Depth
Estimation

Point Cloud ,f“_: Fused Point

2D Backbone
Generation S Cloud

v
. ot
__________________ T GEEEEE LR L E ]

Input to L(:pss Function

Panoptic
Segmentation

Monocular Image (RGB)

Additional steps are relatively lightweignt!

PERCIVAI




Monocular Image (

RGB

Pre-processing

N

Monocular Depth
Estimation

Panoptic
Segmentation

LiDAR Supervision Signal

__________________ L A

Depth Refinement Network
SN '

Point Cloud

| Pre-trained Networks

| Ordinal Regression

EB Concatenate layers / list

Fused Point

: 2D Backbone —— _
; ; Generation

Input to L(:pss Function

)
L/

Cloud

PERCIVAI



Monocular Image (RGB)

Pre-processing

Monocular Depth
Estimation

Panoptic
Segmentation

LiDAR Supervision Signal - Pre-trained Networks
Ordinal Regression

Concatenate layers / list

Point Cloud . Fused Point
Generation L/ Cloud

Input to Lass Function

PERCIVAI



Monocular Image (RGB)

Pre-processing

Monocular Depth
Estimation

Panoptic
Segmentation

LiDAR Supervision Signal - Pre-trained Networks
Ordinal Regression

Concatenate layers / list

Point Cloud . Fused Point
Generation L/ Cloud

Input to Lass Function

PERCIVAI



Monocular Image (RGB)

Pre-processing

Monocular Depth
Estimation

Panoptic
Segmentation

LiDAR Supervision Signal - Pre-trained Networks
Ordinal Regression

Concatenate layers / list

Point Cloud . Fused Point
Generation L/ Cloud

Input to Lass Function

PERCIVAI



LiDAR Supervision Signal - Pre-trained Networks
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LIDAR
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Quantitative

results
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v Radar-camera fusion

v supervised by LIDAR

v LIDAR-like output point cloud

v’ Comparable results in object detection to LIDAR
v’ Especially close-by

v Especially for cyclists
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