

ReliablE in-Vehicle pErception and decisioN-making in complex environmenTal conditionS

Grant Agreement Number: 101069614

D.2.1: User and System Requirements for selected Use-cases

Document Identification			
Status	Final	Due Date	31/03/2023
Version	1.0	Submission Date	31/03/2023
Related WP	WP2	Document Reference	D2.1
Related Deliverable(s)		Dissemination Level	PU
Lead Participant	CRF	Document Type:	R
Contributors	All WP2 partners	Lead Authors	Fabio Tango (CRF)
		Reviewers	Anastasia Bolovinou (ICCS)
			David Fernandez (APTIV)

Funded by the European Union This project has received funding under grant agreement No 101069614. It is funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission. Neither the European Union nor the granting authority can be held responsible for them.

Document Information

Author(s)		
First Name	Last Name	Partner
Fabio	Tango	CRF
Bill	Roungas	ICCS
Seshan	Venkita	ΑΡΤΙΥ
Dariu	Gavrila	TUD
Michael	Buchholz	UULM
Anthony	Ohazulike	HIT-FR
Joshue	Perez	TECN
Kostas	Koufos	WMG
Povilas	Valiauga	S4
		77,

Document History			
Version	Date	Modified by	Modification reason
0.1	27/01/2023	CRF and ICCS	Initial version (structure and some preliminary content)
0.2	08/02/2023	CRF	Preliminary version for WP2 partners
0.3	13/02/2023	CRF	More contributions from partners
0.4	06/03/2023	CRF	Contributions from partners involved in EXPs
0.5	20/03/2023	CRF	Final contributions on Requirements
0.6	22/03/2023	CRF	Version ready for internal review
0.7	28/03/2023	ICCS & APTIV	Updates and comments from the peer review process
0.8	30/03/2023	CRF	Pre-final version for final quality check and approval
1.0	31/03/2023	CRF	Final version submitted to the EC portal

Quality Control		
Role	Who (Partner short name)	Approval Date
Deliverable leader	Fabio Tango (CRF)	30/03/2023
Quality manager	Panagiotis Lytrivis (ICCS)	31/03/2023
Project Coordinator	Angelos Amditis (ICCS)	31/03/2023

Executive Summary

The "D2.1: User and System Requirements for Selected Use-Cases" deliverable is a public report of the EVENTS project, which main goal is to provide the requirements (REQs) of the EVENTS systems and sub-systems, which are defined based on use cases (UCs) and experiments (EXPs). The latter are defined as the specific realizations of one or more UCs by each partner or by synergies of more than one partners. Having therefore as a basis the Grant Agreement (GA), in which three UCs were defined, the work carried out in WP2/Task T2.1 aimed at fine-tuning the UCs' description and at defining the EXPs that are going to be conducted throughout the project.

Starting from these UCs and EXPs, this deliverable, that is part of WP2/Task 2.2, presents the collection of the requirements (REQs) that need to be satisfied by the EVENTS components, which will be described in the next deliverable about functional architecture (D2.2), as well as the analysis of these requirements collected by the partners of the consortium. A total of 135 requirements have been collected, categorized in General, Decision-Making, Perception, Operational and Actuation. The vast majority of the requirements refers to Perception, Operational and Decision-Making.

The activities of T2.1 and T2.2 are finalized with this deliverable; the project development continues with T2.3, which main goal is to define the EVENTS systems' and sub-systems' architecture and its specific instantiations in the project demonstrators.

Table of Contents

Exe	Executive Summary3			
1.	Intro	oduction8		
1.	1	Aim of the Project		
1.	2	Purpose of the Document		
1.	3	Related EVENTS Tasks and Terminology9		
1.	4	Intended Readership 10		
1.		Document Overview		
2.	Use	Cases (UCs) Description12		
2.	1	UC1: Interaction with vehicles and VRUs in Complex Urban Environment		
2.	2	UC2: Non-Standard and Unstructured Road Conditions		
2.	3	UC3: Low Visibility & Adverse Weather		
3.	Ехре	eriments (EXPs) Description16		
3.	1	EXP1: Interaction with VRUs in complex urban environment16		
3.	2	EXP2: Re-establish platoon formation after splitting due to roundabout		
3. da		EXP3: Self-assessment and reliability of perception data with complementary V2X complex urban environments		
3. Ia		EXP4: Decision making for motion planning when faced with roadworks, unmarked nd narrow roads with assistance from perception self-assessment		
3.	5	EXP5: Decision making for motion planning when entering a jammed highway 26		
3.	6	EXP6: Small object detection at a far range in adverse weather conditions		
3. be		EXP7: Localization/perception self-assessment for advanced ACC and other vehicles' our prediction under adverse weather or adverse road conditions		
3. se	-	EXP8: Driving minor road under adverse weather conditions including perception sessment		
3.	9	Summary of Experiments		
4.	Requ	uirement Elicitation Methodology36		
4.	1	Guidelines for Requirements Collection and Analysis		
4.	2	Guidelines for Terminology and Prioritization of Requirements		
5.	List	of Requirements40		
5.	1	EXP1: Interaction with VRUs under complex urban environment		
5.	2	EXP2: Re-establish platoon formation after splitting due to roundabout		

5.3 data in	EXP3: Self-assessment and reliability of perception data with complementary V2X complex urban environments
5.4 Ianes a	EXP4: Decision making for motion planning when faced with roadworks, unmarked nd narrow roads with assistance from perception self-assessment
5.5	EXP5: Decision making for motion planning when entering a jammed highway 47
5.6	EXP6: Small object detection at a far range in adverse weather conditions 50
5.7 predict	EXP7: Localization/perception self-assessment and other vehicles' behaviour ion under adverse weather or adverse road conditions
5.8 assessn	EXP8: Driving minor road under adverse weather conditions incl. perception self- nent
6. Requ	uirements' Analysis55
6.1	Collected Requirements: Results
6.2	Summary of Requirements
	clusions
Reference	ces59
Annex 1.	Detailed WP2 Workflow60
Annex 2.	
Annex 3.	Detailed List of Requirements62
	Sticially 20%

List of Tables

Table 1: Contribution of each partner in the different experiments	. 35
Table 2: Contribution of each partner in the different experiments	. 35
Table 3: The five (5) SMART criteria for requirements collection	. 36
Table 4: Information on the columns/attributes for the requirements table	. 39
Table 5: TUD's list of requirements on EXP1	. 41
Table 6: TECN's list of requirements on EXP2	. 42
Table 7: ICCS's list of requirements on EXP2	. 42
Table 8: UULM's list of requirements on EXP3	. 43
Table 9: CRF's list of requirements on EXP4	. 45
Table 10: HIT-FR's & HIT-UK's list of requirements on EXP4	. 46
Table 11: TECN's list of requirements on EXP4	. 47
Table 12: WMG's list of requirements on EXP4	. 47
Table 13: CRF's list of requirements on EXP5	. 49
Table 14: HIT-FR's & HIT-UK's list of requirements on EXP5	. 50
Table 15: TECN's list of requirements on EXP5	. 50
Table 16: APTIV's list of requirements on EXP6	. 52
Table 17: WMG's list of requirements on EXP7	. 53
Table 18: ICCS's list of requirements on EXP7	
Table 19: S4's list of requirements on EXP8	. 54
Table 20: EXCEL template for the collection of experiments	. 61
Table 21: EXCEL template for requirements collection	. 62

List of Figures

Eiguro 1: EVENTS WD2 structuro	
Figure 1: EVENTS WP2 structure	10
Figure 2: EXP1 example	16
Figure 3: EXP2 example	18
Figure 4: EXP3 example	21
Figure 5: EXP4 example	24
Figure 6: EXP5 example	
Figure 7: EXP6 example	28
Figure 8: EXP7 example	
Figure 9: EXP8 example	33
Figure 10: Requirements statement scheme	38
Figure 11: Number of requirements per partner	55
Figure 12: Number of requirements per implementation/demonstration	56
Figure 13: Requirements per type/category	56
Figure 14: Requirements per experiment (EXP)	57
Figure 15: Detailed EVENTS WP2 structure	60

Abbreviations & Acronyms

Abbreviation / acronym	Description
ACC	Adaptive Cruise Control
AD(F)	Autonomous Driving (Function)
AL	Alert Limit
AV	Automated Vehicle
СА	Consortium Agreement
CAM	Cooperative Awareness Message
CAV	Connected Automated Vehicle
СРМ	Collective Perception Messages
DDT	Dynamic Driving Task
EC	European Commission
EXPs	Experiments
GA	Grant Agreement
IR	Integrity Risk
ISO	International Organization for Standardization
МОР	Moving Object Prediction
МОТ	Multi-Object Tracking
ODD	Operational Design Domain
PE	Position Error
PL	Protection Level
REQs	Requirements
SAE	Society of Automotive Engineers
SPaT message	Signal Phase and Timing message
SPECs	Specifications
TSs	Target Scenarios
UCs	Use Cases
VRU	Vulnerable Road User
WP	Work Package

1. Introduction

Deliverable D2.1 "User and System Requirements for selected Use-cases" presents the project's Use Cases (UCs) and derives system and user requirements (REQs) for each subsystem described inside the UCs. The work on UCs starts with analyzing the three main UCs selected from the proposal phase for demonstrating perception and decision-making capabilities in different operational domain conditions. It then proceeds with breaking down these UCs into experiments (EXPs), where more detailed sub-UCs are described as well as how these sub-UCs will be tested and development of which (C)AD sub-systems they assume. Finally, based on the information from the UCs and the EXPs, the REQs of the EVENTS systems and subsystems are derived.

1.1 Aim of the Project

Driving is a challenging task. In our everyday life as drivers, we are facing unexpected situations we need to handle in a safe and efficient way. The same is valid for Connected and Automated Vehicles (CAVs), which also need to handle these situations, to a certain extent, depending on their automation level. The higher the automation level is, the higher the expectations for the system to cope with these situations are.

In the context of this project, these unexpected situations where the normal operation of the CAV is close to be disrupted (e.g. ODD limit is reached due to traffic changes, harsh weather/light conditions, imperfect data, sensor/communication failures, etc.), are called "events".

Today, CAVs are facing several challenges (e.g. perception in complex urban environments, Vulnerable Road Users (VRUs) detection, perception in adverse weather and low visibility conditions) that should be overcome in order to be able to handle these events in a safe and reliable way.

Within our scope, and in order to cover a wide area of scenarios, these kinds of events are clustered under three main use cases: a) Interaction with VRUs, b) Non-Standard and Unstructured Road Conditions and c) Low Visibility and Adverse Weather Conditions.

Our vision in EVENTS is to create a robust and self-resilient perception and decisionmaking system for AVs to manage different kind of events on the horizon. These events result in reaching the CAV ODD limitations due to the dynamic changing road environment (VRUs, obstacles) and/or due to imperfect data (e.g. sensor and communication failures). The CAV should be able to operate safely in these challenging conditions. When the system cannot handle the situation, an improved minimum risk manoeuvre should be put in place.

1.2 Purpose of the Document

This deliverable is part of the work in Work Package 2 (WP2): "Use cases, requirements and system design" and its main objective is to illustrate in detail the use cases (UCs), the experiments (EXPs), as well as the requirements (REQs) of the EVENTS system. As the first deliverable of WP2, in which the UCs and REQs are described, it will directly influence the other technical documents in the project, since the included information is the basis for all technical developments and research activities in EVENTS. So, for example, the real-world observations and models, as well as the perception and decision-making algorithms of WP3 ("Perception and self-assessment") and WP4 ("On-board decision-making for fail-safe automated vehicle motion") will focus on the selected UCs. In these cases, solutions for the selection of the optimal and safe maneuver of the AV in harsh conditions are developed for the EVENTS systems. In WP5 "System integration and safety compliance", the demonstrators are addressing the use cases described in this deliverable, satisfying the related requirements, to provide the final, integrated EVENTS solutions, for the evaluation work in WP6 ("Evaluation and cost-efficient sensor suites"), and to present the EVENTS achievements to the public in the demonstrator vehicles.

1.3 Related EVENTS Tasks and Terminology

There are two main terms to clearly define, Use Cases (UCs) and Experiments (EXPs). Use Cases (UCs) are the abstract use cases that were initially defined in the Grant Agreement (GA) and are described with refinements in this document (Section 2). More specifically, a UC is a collection of related aspects of the operational design in which the system will be deployed, along with the desired behaviour of the AV. Our UCs are described from the AV perspective, meaning that the AV needs to react to a certain traffic situation/condition.

Experiments (EXPs) are the specific realizations of one or more UCs by each partner or by synergies of more than one partners. EXPs are described in detail in Section 3.

An overview of the structure of WP2, which demonstrates the methodological workflow from the UCs to the EXPs definition (Task T2.1), to the REQs collection and analysis (Task T2.2), to the EVENTS systems' and sub-systems' architecture (Task T2.3) and finally, to the hazard analysis & risk assessment (Task T2.4) is shown in Figure 1. A more detailed figure, including the analysis of UCs, EXPs and REQs that follows, is shown in Annex 1.

Finally, three more terms that need to be defined are a scene, a scenario and a functional scenario. A scene represents a snapshot of the environment including the scenery, dynamic elements, and all actors' and observers' self-representations, and the relationships among those entities [3]. A scenario is a description of the temporal relationship between several scenes in a sequence of scenes, with goals and values

within a specified situation [3]. A functional scenario is a scenario described in natural language on a conceptional level, in general without specific physical values [4]. More details can be found in [3] and [4], as well as in the *"interACT*" EU co-funded project (<u>https://www.interact-roadautomation.eu/</u>).

TASK T2.1 TASK T2.2 Experiments (EXPs) User and system requirements identification and EXP1 specification EXP2 Use Cases (UCs) EXP3 TASK T2.3 UC1 EXP4 Full stack UC2 architecture and interfaces EXP5 UC3 EXP6 TASK T2.4 EXP7 Vehicle system hazard analysis & EXP8 risk assessment

EVENTS - WP2

Figure 1: EVENTS WP2 structure

1.4 Intended Readership

This deliverable is addressed to any interested reader (i.e., PU dissemination level), wishing to know more in details how the EVENTS systems are specified. In addition to that, D2.1 can be practically useful for the consortium members, in particular for WP2 partners, who can use it as a basis for exchanging information as well as understand the UCs and high-level test scenarios in which partners will focus and the requirements of CAVs to operate on those scenarios. For WP3 and WP4 partners, the document will serve a general understanding of the different scenarios that will frame the experiments in which each partner will focus to demonstrate its technology. Finally, for WP6 partners, the document will help them start from the selected UCs to derive and then provide the test-scenarios for the evaluation activity.

1.5 Document Overview

The document is structured in seven sections. After a short introduction on the EVENTS project and the purpose of the current document, the UCs are described in detail, in Section 2. In Section 3, the eight EXPs that are going to be carried out throughout the project are defined. In Section 4, the methodology for eliciting the REQs is described. The REQs for each experiment and per partner are listed in Section 5. In Section 6, the collected REQs are analysed. Finally, in Section 7, final remarks are made with regards to this deliverable.

Not officially approved by the

2. Use Cases (UCs) Description

This section describes the Use Cases (UCs), as described in the Grant Agreement (GA) of the EVENTS project and gives an overview of the challenges to be addressed in each of them with regards to the Perception and Decision-Making AD tasks.

2.1 UC1: Interaction with vehicles and VRUs in Complex Urban Environment

UC1 is concerned with the safe and resilient automated driving (AD) in complex urban environments, i.e., cluttered surroundings (occlusions), multiple road users, V2Xassisted intersections. Particular focus is given on interacting with Vulnerable Road Users (VRUs), e.g., pedestrians, cyclists. Urban roundabouts are also of interest in this UC with focus on V2V info integration and advanced control based on collective perception. The participating partners are (in alphabetical order): 1. ICCS, 2. TECN, 3.TUD and 4. UULM.

The perception challenges associated with UC1 are the following:

- Large variability in the appearance of VRUs (e.g. due to height, mass, clothes, articulated pose, and gazing direction).
- Cluttered surroundings and potential for (partially or fully) occluded vehicles and VRUs.
- Multiple VRUs with high possibility of maneuverability.

The decision-making challenge associated with UC1 is the safe, comfortable and timeefficient motion planning, while coping with the involved uncertainties regarding vehicles, connectivity and VRUs (high maneuverability, perception errors etc.).

The proposed approach for AD systems to interact with vehicles and VRUs in a complex urban environment includes:

 Multi-sensor data fusion for improved VRU detection and localization performance. Performance comparison of various sensor combinations (camera, radar, LiDAR).

- VRU motion prediction:
 - Identify which context cues and models to incorporate.
 - Consider the interpretability of motion models ("Explainable AI").
 - Implement novel ML solutions to understand the intention of VRUs based on their body language.

- Use of V2X in addition to on-board perception to account for visibility obstructions in urban intersections.
- V2X info integrity checks before fusing it with perception.
- Use of V2V in addition to on-board perception to account for restricted FOV due to curvature or visibility obstructions in urban roundabouts (optional – if available). It is necessary a V2V info consistency check before fusing it with perception.
- Principled way of dealing with uncertainty due to imperfect sensing and future road user (inter)action. Sound propagation of uncertainties from the perception component to motion planning component.

2.2 UC2: Non-Standard and Unstructured Road Conditions

UC2 investigates non-standard and unstructured road conditions, for example, road works, accident-zones, or park areas with no lane markings. The participating partners are (in alphabetical order): 1. APTIV, 2. CRF, 3. HIT-FR, 4. HIT-UK, 5. TECN and 6. WMG.

The perception challenges associated with UC2 are the following:

- High precision localization in unstructured environment despite the absence of landmarks.
- Detection of non-standard and unstructured road conditions with typical supervised learning approaches (e.g., object detectors).
- Identification of zones related to road works or accidents, which will require a holistic scene understanding approach (detecting traffic beacons/poles, additional road markings, special-type vehicles like ambulances and police cars, uniformed personnel).
- Lack of communication makes the aforementioned challenges particularly hard.

The decision-making challenges associated with UC2 are the following:

- Decide the high-level maneuvers that a non-standard traffic condition requires, possibly in contradiction with normal traffic rules. Decide whether a minimum risk maneuver is necessary.
- Decide the trajectory that needs to be executed in the presence of uncertainties from perception and localization.
- Design overtaking maneuver for urban park open areas.

The proposed approach for AD systems to cope with non-standard and unstructured road conditions includes:

- Use of data augmentation techniques based on synthetic data (simulation).
- Multi-sensor data fusion for highly accurate 3D measurements.
- Model normative conditions with unsupervised learning, detect anomaly as deviation from norm. Self-assessment of perception and decision-making components.
- Modelling the decision-making process.

2.3 UC3: Low Visibility & Adverse Weather

UC3 aims to extend the environmental conditions of AD functions. The participating partners are (in alphabetical order): 1. APTIV, 2. HIT-FR, 3. HIT-UK, 4. ICCS, 5. S4 and 6. WMG.

The perception challenges associated with UC3 are the following:

- Detection of road users and other objects, under low visibility and adverse weather conditions.
- Prediction of other vehicles behavior (lane changing maneuver), under low visibility and adverse weather conditions.
- Self-assessment of localization and perception under adverse weather conditions.
- Estimation of the road friction.
- Robust localization when snow, fog or rain impair the LiDAR.

The decision-making challenge associated with UC3 is translating the adverse visibility and road conditions to appropriate vehicle motion planning, decision-making and control measures.

The proposed approach for AD systems to cope with low visibility and adverse weather conditions includes:

- Increase training data of object detectors (and their performance) in low visibility and adverse weather conditions by domain adaptation, self-supervision, and adding synthetic/simulated data.
- Multi-LiDAR SLAM for filtering snow/fog/rain in 3D mapping and maintain accurate localization.

- Multi-sensor (camera, LiDAR, radar) data fusion approaches for object detection and road condition estimation.
- Integration of V2X information (optional if available).
- Optimization-based decision-making constrained by visibility/weather conditions. Such conditions are to be estimated online using specialized ML models trained to classify challenging visibility/weather events.
- Improvement and dynamic adaption of the motion planning algorithm based on slippery road conditions.
- Fail-safe planning despite occluded objects and incomplete data, e.g., missing lane markings. This may be achieved by combining traditional optimization-based approaches with modern data driven solutions.
- Adaptive and real-time emergency motion planning based on current road conditions.

Based on the abovementioned described UCs, in the next Section, we illustrate the experiments carried out in the EVENTS project.

3. Experiments (EXPs) Description

In this section, the UCs are further detailed in finer groups that form the eight experiments where more detailed sub-UCs are described. Each experiment includes the following information:

- Sub-UC title, Reference UC and Leading Partner,
- AD System Under Test and targeted ODD,
- Functional scenarios to be tested including a graphical sketch description of the sub-UC,
- Experimental setup preliminary info including information on prototype vehicle, data needed and hints for Evaluation.

General Info		
Experiment Title	Interaction with VRUs in complex urban environment	
Leading Partner	TUD	
Partners Involved		
Reference Use Case	UC1 & UC3	
Associated Tasks	T3.2, T3.3, T3.5, T4.1, T4.2 & T4.3	
AD SuT/ T	arget Operational Domain and Functional Scenario(s)	
Short Verbal Description Detailed Graphical Description	EXP1 is about safe, comfortable and time-efficient automated driving in complex urban environment while interacting with VRUs (e.g. pedestrians, cyclists). The environment perception, road user motion prediction, motion planning and vehicle control will be demonstrated in a single integrated system on-board TUD's own vehicle prototype. The experiment consists of the ego-vehicle driving on a two-lane road (i.e., one lane on each side) whereas several VRUs might (or might not) move into the vehicle's path (e.g., crossing, walk longitudinally, swerve), possibly from behind occlusions (e.g., parked vehicles). The question is whether to decelerate, accelerate or steer away. Experimentally, some VRUs will be real, while others will be realistic dummies (e.g., 4activeSystems). This experiment will include both benevolent and more challenging environmental/lighting conditions (e.g., night, rain, blinding sun), where visibility is hampered. Figure 2: EXP1 example	
Initial Assumptions		

3.1 EXP1: Interaction with VRUs in complex urban environment

Partners' contribution	TUD will demonstrate in its prototype vehicle the interaction of a self- driving vehicle with VRU(s), "full stack". That is, environment perception, road user motion prediction, motion planning and vehicle control will be demonstrated in a single integrated system on-board a real vehicle (SAE level L2 and L3). This might include some type of handcrafted HD map.
Partners' synergies	TUD will be able to handle a few VRU experiment variants independently and share some related non-proprietary datasets. Also, it would be beneficial to share test equipment (e.g. realistic dummies) wherever possible between partners.
Traffic & Environment conditions	The overall experiment is that of the ego-vehicle driving on a two-lane road (i.e. one lane on each side) whereas several VRUs might (or not) move into the vehicle's path (crossing, walk longitudinally, swerve), possibly from behind occlusions (e.g. parked vehicles). The question is whether to decelerate/accelerate or to steer away. Experimentally, some VRUs will be real, while others will be realistic dummies (e.g. 4activeSystems). Some experiment variant will be in benevolent sensing conditions.
Traffic Participants' (TPs) Attributes	Environment perception will aim to extract intent-relevant cues like gaze/head orientation and body pose to improve VRU motion prediction.
Autonomous Vehicle's	
(AV) Attributes	
Limitations	Vehicle speeds up to 30 km/h. In the direct vicinity of real pedestrians / cyclists probably lower.
Other relevant information	
	Vehicle Info
Model	Toyota Prius
Communication	No V2X
Sensors	Currently: front facing stereo-camera, radar and 360° LiDAR 64-layer Velodyne. Sensor set-up might be upgraded.
	Data
Availability	To be discussed
Format	TUD specific initially. To be discussed if other formats are required. TUD uses ROS 1 as middleware.
Openness	To be discussed
	Hints for Evaluation
KPIs	Environment perception is assessed by detection quality (localization accuracy, correct vs. false positives) and tracking quality (id changes etc.). Motion execution of ego-vehicle is assessed along three dimensions: safety, comfort, and time efficiency. Safety and comfort to be assessed both objectively (e.g., safety metrics like time-to-collision (TTC), shortest distance or comfort metrics like maximum acceleration/deceleration) and subjectively (e.g. questionnaire).
Preliminary plan (if available)	

3.2 EXP2: Re-establish platoon formation after splitting due to roundabout

General Info		
Experiment Title	Re-establish platoon formation after split due to roundabout	
Leading Partner	TECN	
Partners Involved	ICCS (T3.4, T3.5)	
Reference Use Case	UC1	
Associated Tasks	T3.4, T3.5, T4.1, T4.2 & T4.3	
AD	SuT/ Target Operational Domain and Functional Scenario(s)	
Short Verbal Description	In EXP2, a coordinated platooning planning is investigated via V2X info integration. A platoon ensemble composed by three CAVs (one CAV leader and two CAVs as followers) in an urban environment is assumed, which is split because of traffic when approaching and crossing a roundabout (driving rules in the roundabout are assumed to prioritize the vehicles inside the roundabout). The followers should be able to reach the leading vehicles ensuring string stability also under curved trajectories. Planning of re-joining the platoon takes advantage of Collective Perception Messages' (CPMs) fused info (and confidence) that is made available to the follower when entering the roundabout.	
Detailed Graphical Description	The experiment incorporates perception augmentation via safe integration of collective perception info, predictive planning for the control of the platooning in an urban environment (T4.1), management of the platooning behavior (T4.2) and design of a safe operational model for when an attached vehicle is in the platoon (T4.3). AV control takes advantage of augmented perception (inside and outside CAVs' FOV) offered by fusion of cooperative awareness messages (CAM) and collective perception messages (CPM) (T3.4 and T3.5) shared by other road users and platoon members. • Green dot denotes V2X capability of the traffic agent P1: CAV platoon leader P2: CAV platoon follower #1 P3: CAV platoon follower #2 (• Cti Si the subject vehicle which tries to reconnect with the platoon via merging into the roundabout right after/before P1, P2, details of P1, P2, P3 choreography so that a platooning reconnection is realized to be specified later). CV1, CV2, CV3: Connected vehicles able to share CAM, DENM, CPM info V1: not connected vehicle. <i>Figure 3: EXP2 example</i> Platoon split/re-joining control strategy: A platoon ensemble of 3 CAVs, P1, P2 and P3 approaches a roundabout. Due to traffic conditions at the entrance of the roundabout, and 2) waiting to enter the roundabout. The vehicle(s) that managed to enter the roundabout must remain at the roundabout until rejoined by the rest. This strategy for rejoining, will be the focus of development in T4.2. In order to rejoin the platooning safely, the vehicles will take into account the traffic conditions and obstacle definition in its surroundings, which will be	

	augmented by the use of CPM. An example of such a maneuver is illustrated in Figure 3.
Initial Assumptions	Connected Autonomous Vehicular (CAV) platoon refers to a group of vehicles that coordinate their movements and operate as a single unit. The vehicle at the head acts as the leader of the platoon and determines the course of the vehicles following it. The follower vehicles utilize Vehicle-to-Everything (V2X) communication and automated driving support systems to automatically maintain a small fixed distance between each other.
	This experiment is based on the following assumptions:
	 The leader vehicle can be made aware of the gap opening in the rear. Communication between vehicles is working at a rate that allows real- time processing during the experiment. The vehicle(s) inside the roundabout adapt their speed and trajectories, in order to facilitate the lost follower(s) to re-join the platoon.
Partners'	The experiment will be tested both in a virtual and a real environment. For the
contribution	former, TECN will use a digital twin built in Carla simulator combined with a control architecture developed in C++. For the latter, TECN will use their own vehicle, which is equipped with LiDAR, GPS and communication capabilities. ICCS will contribute by setting up CPM fusion and CAVs' perception augmentation incorporating multi-source information plausibility checks using ROS and CARLA.
Partners' synergies	Perception object-level information is assumed available (virtually constructed) as the experiment focus on CAV perception augmentation and control. ICCS will deliver augmented perception info and object-level confidence to TECN's controller and adapt its development so that its modules can be integrated in TECN's experimental architecture.
Traffic &	ODD adapted to UC2. Good weather conditions in a low speed roundabout
Environment conditions	crossing.
Traffic Participants' (TPs) Attributes	Simulated connected vehicles members of the platoon with V2X capabilities. Simulated connected vehicles outside of the platoon with V2X capabilities. Simulated non-connected vehicles.
Autonomous	CAV platform capable of low speed maneuvers.
Vehicle's (AV)	CAV platform equipped with obstacle detection systems.
Attributes Limitations	All platoon vehicles are connected to each other via V2V. Perception layer is abstracted and hence is not tested here. Bad weather could
Limitations	be virtually tested but not the focus here.
Other relevant	Vehicle platforms require safety drivers.
information	
Vehicle Info	
Model	Renault Twizy
Communication	V2X/5G Modules of Commsignia + Antennas
Sensors	2 LIDARs + DGPS-RTK
	Data
Availability	Data in ROSbag (ROS2)
Format	CAM msgs; MQTT; ROS msgs (json)
Openness	Data public for partner of EVENTS
Hints for Evaluation	

KPIs (preliminary)	 Augmented perception KPIs: Objects' presence consistency checks (inside and outside FOV) success rate FoV augmentation with time (percentage)
	Control KPIs:
	 Longitudinal and lateral errors (RMS)
	 Stabilization time (due to wave effect in platooning)
	 Distance for rejoining the platoon with min stabilization time
Preliminary plan (if	A hybrid SiL/ViL testing environment will be deployed including two real vehicles
available)	by TECN, deployed in a test track, which will interact in real time with other
	simulation-based virtual vehicles and a virtual intelligent Road Side Unit (iRSU),
	generated in the tested scenarios. Platoon strategy evaluation to be discussed
	later.

Marine and a second sec

3.3 EXP3: Self-assessment and reliability of perception data with complementary V2X data in complex urban environments

General Info	
Experiment Title	Self-assessment and reliability of perception data with
	complementary V2X data in complex urban environments
Leading Partner	UULM
Partners Involved	
Reference Use Case	UC1
Associated Tasks	T3.4 & T3.5
AD SuT/ Ta	rget Operational Domain and Functional Scenario(s)
Short Verbal Description	EXP3 is concerned with safe automated driving in a complex urban environment with occlusion, in order to demonstrate the integration of reliability assessment outputs of environment state estimation (onboard self-assessment methods) and V2X data into an onboard perception system. The experiment will be conducted both in a virtual and a real environment. The former will be simulation- based, and it will be primarily concerned with developing a self- assessment layer for the perception data (T3.5) along with complementary V2X data (T3.4). The latter will be realized in UULM's vehicle, with safety drivers/marshals to account for the prototypical status of the developed system, and in UULM's V2X infrastructure pilot site, where the automated ego vehicle will face
	objects and (artificial) error/degradation in one of the sensors/V2X.
Detailed Graphical Description	Ligend: Image: Image
Initial Assumptions	Single failure in data, not something like "everything delivers wrong data". For V2X: pilot site with compatible data interface available.
Partners' contribution	UULM develops and implements a self-assessment system of the perception

Partners' synergies	UULM will be able to handle the development and implementation		
	of the self-assessment system independently		
Traffic & Environment	Good weather conditions, good road conditions, good lighting		
conditions	conditions, during the day, for V2X: pilot site with V2X data available.		
Traffic Participants' (TPs)	There must be objects in the automated ego vehicle's environment		
Attributes	to be detected and an error/degradation in one of the sensors (or V2X) must "occur" (or artificially realized).		
Autonomous Vehicle's	Only in own UULM vehicle under above-described conditions, with		
(AV) Attributes	safety drivers/marshals to account for the prototypical status of the developed system.		
Limitations	UC implementation and testing will be based on UULM's test track		
	and equipment (topology, infrastructure, prototype AV).		
Other relevant	Demonstration of V2X reliability and perception self-assessment		
information	will be possibly performed in a SiL manner with recorded or		
	synthetic data as input (real world demonstration with fault		
	injection not foreseen as it is not safe).		
	Vehicle Info		
Model	Mercedes-Benz E-Class T-model		
Communication	V2X		
Sensors	Cameras, radars, LiDARs, ADMA		
	Data		
Availability	Within the vehicle and internally, including pilot site		
Format	Rosbags		
Openness	To be discussed/clarified (GDPR & IP issues)		
	Hints for Evaluation		
KPIs	To be developed/discussed (self-assessment and reliability of V2X		
	augmented perception data need special care due to limited data)		
Preliminary plan (if			
available)			
available)			

3.4 EXP4: Decision making for motion planning when faced with roadworks, unmarked lanes and narrow roads with assistance from perception self-assessment

General Info	
Experiment Title	Decision making for motion planning when faced with roadworks, unmarked lanes and narrow roads with assistance from perception self-assessment
Leading Partner	HIT-FR & HIT-UK
Partners Involved	CRF, TECN, WMG
Reference Use Case	UC2
Associated Tasks	T3.2, T3.3, T3.4, T3.5, T4.1, T4.2 & T4.3
AD SuT/ Ta	rget Operational Domain and Functional Scenario(s)
Short Verbal Description	EXP4 is an end-to-end experiment starting with the precise vehicle localization, by defining a semantic representation of the environment (T3.2), and the motion prediction of dynamic objects in the scene (T3.3). The localization of the ego-vehicle will be further enhanced by using V2X information (CAM, CPM and SPAT messages, optional, if available), thus increasing the reliability of its position in case of a failure or sensor blockage (T3.4). Particularly in the context of roadworks, unmarked lanes and narrow roads, the ego-vehicle performs a self- assessment by deciding whether to trust its perception system (T3.5). Using CRF's demo vehicle, the trajectory and motion planning of the ego-vehicle will be defined in real time based on a sampling approach, the model predictive control (MPC) curves and the vehicle's model (T4.1). Further to the above, the ego-vehicle's behavioural decision making will be tested by using long/short-term MOT/MOP in a cascaded integration approach in which the prediction estimation (other vehicles, VRUs, etc.) feeds the ego-vehicle's behavioural decision- making and vice-versa. In addition, high-level behavioural decision making, based on Fuzzy Inference Systems, will be taken into account by considering disturbances and unexpected behaviours including the optimal action to perform (T4.2). Finally, the vehicle's control algorithms will be enhanced with a fail operational mode to track cases of positioning failure (T4.3). The different modules of this experiment will be tested in HIT-FR's and CRF's demo vehicles and in Carla simulator.

Detailed Graphical Description	i = i = i = i = i = i = i = i = i = i =
Initial Assumptions	Perception Platform (PP) able to reconstruct the experiment. V2X can be optional. Data shall be reliable and integral.
Partners' contribution	CRF has a vehicle for testing. PP and localization will be provided by HIT-FR. TECN will provide ML algorithms for trajectory planning. WMG will provide self-assessment of perception-based localization.
Partners' synergies	HIT-FR provides PP to TECN for the development of algorithms, and to WMG for self-assessment algorithms, which will be integrated in the CRF vehicle demo.
Traffic & Environment conditions	Weather conditions = good (no adverse weather). Road conditions = critical (e.g., for missing lanes). Lighting conditions = clear, daytime. Traffic density = low or medium (not high or traffic jam).
Traffic Participants' (TPs) Attributes	Presence of other vehicles. Number of TPs = any, depending on the traffic conditions. Speed of TPs = any, according to extra-urban and motorway speed limits. Direction of TPs = forward, same direction of ego-vehicle (violations are not considered here). Impairment of the TP's perception = optionally V2X (but cannot be mandatory).
Autonomous Vehicle's (AV) Attributes	Driving direction = forward (reverse not allowed) Speed of AV = as before, any (according to extra-urban and motorway speed limits). TBD others
Limitations	Detection of environment should be provided in advance of TBD (*) seconds. Constraints in the motion control part (controlling the steering wheel, not every angle is possible).
Other relevant	
information	Vehicle Info
Model	Maserati "Quattroporte" (to be confirmed)
Communication	V2V, V2I
Sensors	Depending on the PP (it can be cameras, radars, LiDAR; TBD ultrasonic sensors).

Data	
Availability	TBD
Format	VECTOR tools (so, .MAT or .CSV, but others can be defined).
Openness	Usable for partners of the team; TBD for others
	Hints for Evaluation
KPIs	 Some examples: Time spent in critical regions (defined by TTC). Number of interventions from human driver / Number of function disengagements. Number of crashes / near-crashes. To be refined later on.
Preliminary plan (if available)	

3.5 EXP5: Decision making for motion planning when entering a jammed highway

	General Info	
Experiment Title	Decision making for motion planning when entering a jammed highway	
Leading Partner	HIT-FR & HIT-UK	
Partners Involved	CRF, TECN	
Reference Use Case	UC2	
Associated Tasks	T3.2, T3.3, T3.4, T4.1, T4.2 & T4.3	
AD SuT/ Ta	arget Operational Domain and Functional Scenario(s)	
Short Verbal Description	EXP5 is similar to EXP4 with two main differences. The first is that there is not self-assessment (T3.5) of the ego-vehicle. The second difference is that the motion planning involves path and speed planning as well as control of the different highway entering experiments.	
Detailed Graphical Description	Ego (black car) merge into lane with jammed traffic (red cars)	
Initial Assumptions	No communication errors	
Partners' contribution	CRF, and HIT-FR/UK provide vehicle and sensors, HIT-FR and TECN provide perception, localization and path planning software for the use case.	
Partners' synergies		
Traffic & Environment conditions	Traffic jammed lane, with good visibility.	
Traffic Participants' (TPs) Attributes	High density of vehicles. Ego vehicle would find it difficult to merge owing to the high density of vehicles.	
Autonomous Vehicle's (AV) Attributes	No VRU's, forward direction, ego velocity very low.	
Limitations		
Other relevant information		
Vehicle Info		
Model	Maserati "Quattroporte" (Modelled in Carla simulator)	
Communication	V2V, V2I (potentially difficult on CRF's demo vehicle)	

Sensors	Depending on the PP (it can be cameras, radars, LIDAR; TBD ultrasonic sensors).	
Data		
Availability	TBD	
Format	VECTOR tools (so, .MAT or .CSV, but others can be defined).	
Openness	Usable for partners of the team; TBD for others	
Hints for Evaluation		
KPIs	 Some examples: Time spent in critical regions (defined by TTC). Number of interventions from human driver / Number of function disengagement. Number of crashes / near-crashes. 	
Preliminary plan (if available)		

Hot officially approved on

3.6 EXP6: Small object detection at a far range in adverse weather conditions

General Info	
Experiment Title	Small object detection at a far range in adverse weather conditions
Leading Partner	APTIV
Partners Involved	-
Reference Use Case	UC2 & UC3
Associated Tasks	Т3.2
AD SuT/ Ta	rget Operational Domain and Functional Scenario(s)
Short Verbal Description Detailed Graphical Description	Ego-vehicle approaches a static object (e.g., debris) present on the ego-lane with a high speed. The visibility is deteriorated due to heavy rain/fog/snow during night/day. The vehicle should perform a full stop to avoid a collision or drive over the object safely. EXP6 concerns the sensing of small objects and semantic representation of the environment (object relative position, object lane assignment, object size, object velocity, object over-drivability and estimation of time to collision). The demo vehicle provided by
	APTIV will be equipped with a low-cost sensor set with perception and localization algorithms running on a development computer. An evaluation of the sensors' performance will be conducted, in order to detect small object and estimate drivability on various weather conditions. In addition, the perception algorithms will be integrated in a SIL environment and subsequently, the performance requirements, by fault-injection, and the observations at vehicle behavior with a simple behavior model, which breaks to avoid collision, will be generated.
	Figure 7: EXP6 example
Initial Assumptions	CAV is engaged on automated mode and the driver is not monitoring the road (hands-off). There are no faults that occur in the system (sensing, actuation, compute etc.) during the experiment only performance insufficiencies due to bad weather conditions.
Partners' Contribution	APTIV has a test vehicle with a sensor suite comprising of Radars, camera and a LiDAR based ground-truthing system. ML based perception algorithms (sourced external to the project) will be integrated and tested, both in simulations and on the test vehicle. APTIV will also perform a safety analysis (HARA or other methods) to derive the safety goals for this experiment. The safety goals along with the functional requirements for the system will be used to derive requirements for the perception module to ensure a safe behavior.

Partners' Interaction	
Traffic & Environment	Two lane straight road with the adjacent lane occupied. No other road users are present in the ego lane except for the object of interest. Visibility is impaired due to rain/fog/snow.
Traffic Participants' (TPs) Attributes	
Autonomous Vehicle's (AV) Attributes	Speeds between 30km/h to 130 km/h
Limitations	
Other relevant information	APTIV plans to use CarMaker as simulation engine (but could also use CARLA)
	Vehicle Info
Model	PSA Peugeot 3008
Communication	No V2X
Sensors	4x Corner radars, 1x Front radar, 1x Rear radars, 1x Velodyne Alpha, 1x Front HD camera, Prime LiDAR, Applanix PS LV5 (IMU/GPS)
	Data
Availability	To be discussed
Format	APTIV proprietary initially. To be discussed if other formats are required
Openness	To be discussed
	Hints for Evaluation
KPIs	 At vehicle level: Maximum deceleration required to come to stop. Distance to obstacle after stop.
	 At perception level (open loop real drives): Distance to obstacle at the time of high-confidence detection and classification. Distance to obstacle at the time of low-confidence detection and classification. Accuracy of position and dimensions of detected object. Accuracy of estimated TTC. Number of false positives/negative detections and classifications.
Preliminary plan (if	APTIV initially plans to do open loop (perception only) for real drive
available)	test and close loop (perception + behavior) for simulations.

/

3.7 EXP7: Localization/perception self-assessment for advanced ACC and other vehicles' behaviour prediction under adverse weather or adverse road conditions

General Info	
Experiment Title	Localization/perception self-assessment for advanced ACC and other vehicles' behavior prediction under adverse weather or adverse road conditions
Leading Partner	WMG
Partners Involved	ICCS
Reference Use Case	UC2 & UC3
Associated Tasks	T3.2, T3.5, T4.2
AD SuT/ Ta	rget Operational Domain and Functional Scenario(s)
Short Verbal Description	This experiment focuses on the development of an integrity monitoring mechanism for estimating the distance to the leading vehicle in urban and highway environments under adverse operational domain conditions. The mechanism should reliably indicate the point in time when the relative localization of the ego- vehicle with respect to the leading vehicle must not be trusted and/or the object detection and tracking becomes unreliable. Another objective (not related with the self-assessment objective) is to study the effects of adverse weather conditions on a perception module performing other vehicles' behavior prediction.
Detailed Graphical Description	 Onboard perception sensors such as Camera(s), LiDAR and RADAR(s) may be subject to various forms of impairments and faults yielding localization errors. For instance, under adverse weather and lighting conditions the performance of onboard cameras or LiDAR for relative localization to the leading vehicle can degrade. Similarly, adverse weather conditions can affect the quality of camera-based or LiDAR-based object detection and sequentially the prediction of other road users' maneuvers. Therefore, a self-assessment mechanism indicating when to trust the perception of the egovehicle is required too. In EXP7, the weather conditions will either be classified or will be known beforehand. Sub-experiments carried out under EXP7 will demonstrate: The self-assessment of the perception module (e.g., camerabased or lidar-based detection of other vehicles) under adverse weather conditions. Experiments will be carried out both in urban roads and motorway environments. The integrity monitoring mechanism of the distance estimation to the leading vehicle along a motorway. No Autonomous Driving Function (ADF) will be engaged in motorway driving. Integrity monitoring of GNSS-based localization in urban roads. Extensive data collection would be required to collect the ground truth.

	 The output of T3.5 is that the ego-vehicle's confidence level for the perception and/or localization is x% and y%, respectively. The effects of object-level uncertainties caused by bad weather in the task of other vehicles' maneuver prediction/classification (T4.2 by ICCS).
Initial Assumptions	The developed integrity monitoring system will be first tested in a simulation environment, e.g., MATLAB and/or CARLA prior to field trials, data collection and experimentation. Furthermore, assumptions related to sensor range coverage and detection quality with respect to the environment, e.g., density of vehicles, will be determined later. Similarly, the developed self-assessment mechanisms will be first tested using public datasets before data collection. Finally, the prediction of other vehicles' maneuvers study will be evaluated in CARLA by substituting the perception layer with CARLA ground truth, since the focus is on evaluating the other road vehicles' maneuver prediction algorithm robustness.
Partners' Contribution Partners' Interaction	The developed integrity monitoring and self-assessment systems will be designed by WMG and integrated and tested on public roads or WMG proving ground using the WMG research vehicle. The prediction of other road vehicles' maneuver will be realized by ICCS and tested either on real world dataset or integrated in CARLA to be tested virtually in hand-crafted set of scenarios covering various ODDs. TBD
Traffic & Environment	Data collection and field trials to assess the performance of the
	developed integrity monitoring and self-assessment mechanisms under variable weather, road traffic, and lighting conditions, as well as different times of the day.
Traffic Participants' (TPs) Attributes	Other motorway or urban road vehicles including for instance their driving direction and speed profile. Predicted maneuvers of other road users: keep the lane, lane-change, return to the left lane, cut-in from the right, cut-in from the left etc.).
Autonomous Vehicle's (AV) Attributes	Motorway/Urban chauffeur with focus on adaptive cruise control (ACC) (and eventually ALKS). Other attributes include the driving direction and the speed profile of the ego vehicle.
Limitations	There is no intention to engage the drive-by-wire control in motorway driving but the performance of the integrity monitoring system and perception self-assessment mechanisms through live

Other relevant	on-road data will be evaluated. The drive-by-wire system might be activated for urban driving. In both cases, the WMG research vehicle will be used for data collection. The collected data will be used for offline performance evaluation of the developed integrity monitoring and self-assessment mechanisms. Additionally, virtual scenarios will be generated for testing maneuver prediction of other road vehicles' algorithm.
information	
	Vehicle Info
Model	Ford Mondeo Hybrid; Open Innovation Vehicle Platform.
Communication	Cellular data and V2X /ITS-G5/DSRC, which is available but not required).
Sensors	Cameras, radars, LIDAR, dGPS (may not engage all of them at the end).
	Data
Availability	Object detections of motorway traffic objects surrounding the ego vehicle using its onboard sensors.
Format	Raw data in ROS .bag format.
Openness	Processed data can be shared within the consortium, i.e., data which doesn't require anonymisation such as bounding boxes and csv files.
	Hints for Evaluation
KPIs	Definitions: Position error (PE) is the difference between the estimated position (output of the localization system) and the actual position at each time. Integrity risk (IR) is the probability that the localization system will provide a position error larger than the alert limit (AL) without an alert being triggered. The AL is a system design parameter indicating the maximum allowable PE after which the localization system becomes unavailable, i.e., an alert is triggered. In practice, an upper bound on the position error is calculated, known as protection level (PL), and is compared to the AL. If PL>AL an alert is triggered. The KPIs of integrity monitoring for localization is the number of times that PL>AL while PE <al, i.e.,="" pe<al<pl<br="">(system unavailable) and the number of times that PE>AL while PL<al, (hazardous="" be<br="" can="" i.e.,="" kpis="" operation).="" pl<al<pe="" similar="">defined for the self-assessment of perception.</al,></al,>
Preliminary plan (if available)	

3.8 EXP8: Driving minor road under adverse weather conditions including perception self-assessment

General Info		
Experiment Title	Driving minor road under adverse weather conditions including	
	perception self-assessment	
Leading Partner	S4	
Partners Involved		
Reference Use Case	UC3	
Associated Tasks	T3.2, T3.5, T4.2 & T4.3	
	AD SuT/ Target Operational Domain and Functional Scenario(s)	
Short Verbal Description	Similar to EXP7 but in slow speed roads instead of motorways. Driving in minor roads (<40kmh) under adverse weather conditions. ADS adapts to weather conditions. (Simulation or controlled conditions can be used to produce the conditions)	
Detailed Graphical Description	The low atmospheric visibility in adverse weather conditions like fog, snow, and rain reduces the maximum viewing distance of LiDAR sensors. This in turn decreases the object detection and localization performance and cause safety hazards.	
	Weather conditions have effect on sensing and therefore on perception and localization of automated driving system. Use case provides possibility to evaluate the on-board visibility-based localization performance estimate. Safe vehicle control is necessary in case the weather conditions worsen and fail-safe behavior in case of exiting the ODD completely due to extreme weather.	
	Figure 9: EXP8 example	
Initial Assumptions	The developed integrity monitoring system will be first tested in a simulation environment, e.g., MATLAB and/or Carla prior to field trials, data collection and experimentation. Furthermore, assumptions related to sensor range coverage and detection quality with respect to the environment, e.g., density of vehicles, will be determined later.	
Partners' contribution	Perception and self-assessment system from tasks T3.2 and T3.5. can be evaluated. On-board decision-making systems from T4.2. and T4.3 can be evaluated.	
Partners' synergies		
Traffic & Environment conditions	Data collection and field trials allow to assess the performance of the developed perception and self-assessment systems and on- board decision-making systems under variable weather conditions.	

Traffic Participants' (TPs) Attributes		
Autonomous Vehicle's (AV) Attributes	Low speed automated driving system	
Limitations	32 kmh	
Other relevant information		
	Vehicle Info	
Model	S4 ADS equipped Toyota Proace Verso EV	
Communication	Cellular data 4G	
Sensors	Cameras, Radars, LIDAR, RTK GPS	
Data		
Availability	Object detections of motorway traffic objects surrounding the ego vehicle using its onboard sensors.	
Format	Raw data in ROS .bag format	
Openness	Processed data can be shared within the consortium, i.e., data which doesn't require anonymisation such as bounding boxes and CSV files.	
	Hints for Evaluation	
KPIs	 Measure of weather effect to localization accuracy Localization performance in different weather conditions Sensor visibility estimate correctness Sensor blockage detection correctness PE and IR as in EXP7. 	
Preliminary plan (if available)		

3.9 Summary of Experiments

A summary of each partners' contribution in the different experiments is shown in Table 1. In addition, in Table 2, the operational domains for each experiment are illustrated.

Experiment	Partners' Contribution
EXP1	TUD: Full AD stack supporting urban driving focusing on VRUs interaction
EXP2	TECN: Vehicle, Motion control, V2V communication
	ICCS: Simulation collaborative driving for CAMs and CPMs
EXP3	UULM: Self-assessment of perception, V2X, vehicle infrastructure pilot
	site or respective data
EXP4	CRF: DM, Vehicle, Motion control
	HIT: Perception platform and localisation
	TECN: RT-motion control
	WMG: Perception self-assessment
EXP5	CRF: DM, Vehicle, Motion control
	HIT: Perception platform and localisation
	TECN: RT-motion control

EXP6	APTIV : Sensing of small objects and semantic representation of the environment (object relative position, object lane assignment, object size, object velocity, object over-drivability and estimation of time to collision).
EXP7	WMG : Integrity monitoring and perception self-assessment ICCS : Behavior prediction of other vehicles
EXP8	S4 : Visibility assessment of the lidar (T3.2), Sensor data quality assessment (T3.5), Path planning around static object on the path (T4.1), Decision making for remote operator assistance (T4.2), MRM decision making (T4.3).

Table 1: Contribution of each partner in the different experiments

Experiment	Operational Domains
EXP1	Urban 2-directional road, VRU presence, parked vehicle presence, good and adverse weather.
EXP2	Urban roundabout, low speed, V2V connectivity deployed, good weather.
EXP3	Urban intersection, V2X connectivity deployed, good weather.
EXP4	Peri-urban/ motorway roads with roadworks, unmarked lanes including narrow roads, V2X connectivity deployed (optional), good weather.
EXP5	Motorway/peri-urban on-ramp section (merging onto main road from on-ramp lane), High density of vehicles on the main motorway (traffic jam), good weather.
EXP6	Motorway (two lane straight road with the adjacent lane occupied, presence of debris/unknown object on the ego-lane (no other road users are present in the ego lane), adverse weather incl. rain/fog/snow.
EXP7	Peri-urban/urban/motorway roads, adverse weather, adverse road conditions.
EXP8	Rural/minor roads, slow speed, adverse weather

Table 2: Contribution of each partner in the different experiments

The contents of this Section are crucial because the experiments are the core for the definition of the project requirements, described in Section 4.

~

4. Requirement Elicitation Methodology

Requirements (REQs) are an essential part of product design. A requirement describes any physical or functional performance of a product or a service. In the EVENTS project, the collected requirements are based on the use cases and experiments, as these were defined in the Section 2 and Section 3 respectively.

Despite the fact that the compiling phase of requirements is often underestimated in a project, the requirement elicitation is a discovery and invention process, not just a collection process. The most important question therefore when compiling the requirements is: "Is anybody else able to understand my requirements?".

With this under consideration, in this section, the methodology for eliciting the requirements is presented, which aim to address the system functionality required by the EVENTS components and sub-systems, in order to handle the selected use cases and experiments.

4.1 Guidelines for Requirements Collection and Analysis

The first phase of this activity consists of collecting and analysing the requirements, based on the information provided by the partners. In this first phase, requirements are collected and arranged into a hierarchical structure from the top-level feature goals to the low-level atomic requirements, with the goal to assure requirements traceability and the identification of low-level (atomic) requirements.

In order to assure a high quality of requirements, the collection of requirements will follow the SMART method (Specific, Measurable, Attainable, Realizable and Traceable), which gives the criteria to guide the setting of goals, like for example in project management. The meaning of these five criteria is explained in Table 3.

Criteria	Meaning
Specific	A requirement must say exactly what is required.
Measurable	It is possible, once the system has been implemented, to verify that the requirement has been met.
Attainable	It is possible physically for the system to exhibit that requirement under the given conditions.
Realizable	It is possible to achieve a requirement given what is known about the constraints under which the system and the project must be developed.
Traceable	Requirements traceability is the ability to trace (forwards and backwards) a requirement from its conception through its specification to its subsequent design, implementation and test.

Table 3: The five (5) SMART criteria for requirements collection

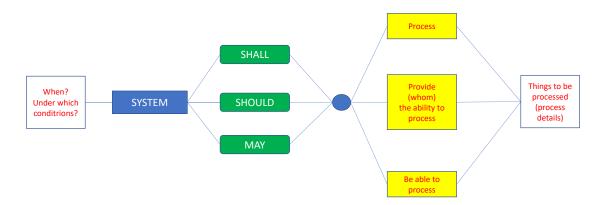
The requirements collected are a combination of low-level requirements and highlevel requirements, the distinction of which will be specified during the project development.

With reference to Table 3, the requirements in EVENTS have been collected so that to fulfil the following criteria:

- <u>Abstract</u> \Rightarrow Each requirement should be implementation-independent.
- <u>Unambiguous</u> ⇒ Each requirement should be stated in such a way so that it can be interpreted in only one way.
- <u>Traceable</u> ⇒ For each requirement, it should be feasible to determine a relationship between specific documented statement(s) of need and the specific statements in the definition of the system given as evidence of the source of a requirement. It should be noted that, in this first release of requirements, the "Dependencies" column has not been filled in by all partners and for all the requirements (indicated as "empty" or "NA"), which means that Traceability is not ensured in every instance.
- <u>Verifiable</u> ⇒ Each requirement should have the means to prove that the system satisfies the requirements. "Verifying" a requirement does not always mean technical "testing". It also may mean reviews and inspections (e.g., documentation quality requirements).
- <u>Unique</u> ⇒ A requirement must be present exactly once. Duplicate requirements have a tendency of becoming inconsistent.

Further requisites are harder to verify but also important:

- A complete requirements specification must precisely define all the real-world situations that will be encountered and the system's responses to them.
- Consistent and correct, meaning that the requirements are free from contradictions.


These indications imply that requirements can be refined (changes can always happen, since the requirements may not be detailed enough). All the requirements have been individually checked for their comprehensibility, removing all the ambiguities and verifying the necessity of each requirement.

4.2 Guidelines for Terminology and Prioritization of Requirements

The methodology used for describing the requirements in EVENTS is based on the scheme shown in Figure 10.

As illustrated in Figure 10, the requirements are connected with one another in a hierarchical manner: a child requirement details the parent requirement, then requirements are organized in a tree-like manner.

Figure 10: Requirements statement scheme

In the EVENTS project, for the requirements collection, an Excel-based table is used. For each requirement, the required attributes are shown in Table 4.

Column Name	Description	Instructions
ID	Unique Identification code.	
Type or Category	Classification of Requirements.	Withreferencetosomepreviousprojects ¹ ,theproposed categories are:•General GEN)•Decision Making (DM)•Perception (PER)•Operational (OPE)•Actuation (ACT)
Name	Unique name for the requirement.	It complements the ID
Definition	Concise definition of the requirement (one / two sentence(s) max for each requirement).	 The following statements were used: SHALL is technically binding SHOULD is an urgent recommendation MAY specifies optional behavior.
Rationale	A brief explanation why this requirement is important or necessary.	
Metrics	Provide a target that makes it possible to assess if requirement is satisfied or not.	Requirements and metrics should be always considered together: when we define a requirement, we must always define also its metric(s).
Relevance	Priority assigned to a particular requirement.	 In details: H = High (Essential to have, otherwise no implementation) M = Medium (Important to have, degraded performances, if not)

¹ Examples are "interACT" (<u>https://www.interact-roadautomation.eu/</u>), "PRYSTINE" (<u>https://prystine.eu/</u>), and so on.

Owner	Beneficiary partner who created	 L = Low (Nice to have (to add new or additional features to the system). S/he is the author and the responsible
Status	this requirement. Degree of requirement fulfilment.	responsible. It can be: • Fulfilled • Partially Fulfilled • Not Fulfilled.
Reference Use Case	Refer to the Use Case number that generated this requirement as defined in T2.1 (see also previous Chapters).	Refer to the Use case ID.
Implementation	Where the requirement is Implemented.	For example, in which demonstrator? Real-car or Driving-simulator?
Dependencies	Dependencies on other Requirements.	List other requirement IDs or factors which this requirement will be dependent upon. Leave empty if not needed.
Conflicts	Conflicts with other Requirements.	List all those necessary. Leave empty if not needed.
Review	Review of requirements.	It is a kind of refinement, if needed.
Comments & Notes	Comment and notes on a specific requirement.	As a support, to specify better a single aspect.

Table 4: Information on the columns/attributes for the requirements table

In order to fill in the Excel table, the following guidelines were taken into consideration. In the first phase of collection, requirements have been identified by each partner involved in the activity, using an "identification code (ID)", expressed in the following form:

WPx_[Company]_REQyy_vz.z, (1)

where:

- WPx = number of WP (2-6).
- Company = name of the partner, owner of the requirement.
- REQyy = serial number of the requirement
- vz.z = version of the requirement and the related refinement.

In the second phase, the complete list was refined, similar requirements have been merged and duplicates have been eliminated.

5. List of Requirements

In this section, the complete list of requirements per experiment of the EVENTS project is illustrated. For the purposes of being easily readable and legible, only some of the attributes of the requirements are shown. Namely, these attributes are the Owner of the requirement, ID, Name, Type (i.e., General – GEN, Decision Making – DM, Perception – PER, Operational – OPE, Actuation – ACT) and Description. It should be noted that some of the requirements might appear twice in different experiments by the same owner; they are not duplicates, they apply on both experiments and are listed twice for ease of reference. The complete list of requirements including all the attributes can be found in Annex 3.

TUD (Demo Vehicle & Simulation)				
ID	Туре	Name	Description	
WP5_TUD_REQ001_1	OPE	ODD - Traffic	The system shall function in the urban environment	
WP5_TUD_REQ002_1	OPE	ODD - Weather conditions	The system shall function in the presence of light rain and fog	
WP5_TUD_REQ003_1	OPE	ODD - Weather conditions	The system shall function in the presence of light snowfall	
WP5_TUD_REQ004_1	OPE	ODD - Illumination	The system shall function at day and night	
WP5_TUD_REQ005_1	OPE	ODD - Ego Vehicle	The system shall be enabled in a speed range of 5 to 30 km/h	
WP3_TUD_REQ006_1	PER	Obstacle localization	The system shall be capable of detecting/localizing obstacles on the road ahead of the vehicle.	
WP3_TUD_REQ007_1	PER	Obstacle velocity estimation	The system shall be capable of estimating velocities of moving obstacles on the road ahead of the vehicle	
WP3_TUD_REQ008_1	PER	Object classification	The system shall classify obstacles which are pedestrians, riders (e.g. cyclists) and cars as such	
WP3_TUD_REQ009_1	PER	Self-localization	The system shall self-localize w.r.t. a global map	
WP3_TUD_REQ010_1	OPE	ODD detection	The system shall detect if it is outside its ODD	
WP4_TUD_REQ011_1	DM, ACT	Driving behaviour w.r.t. road border	The ego-vehicle shall not drive too closely to the road border	

5.1 EXP1: Interaction with VRUs under complex urban environment

WP4_TUD_REQ012_1	DM,	Driving behaviour	The ego-vehicle shall not drive too
	ACT	w.r.t. obstacles and	closely to obstacles; the minimum
		VRUs	distance will depend on whether
			obstacles are stationary or
			dynamic, and whether classified as
			VRU (pedestrians, riders) or not
WP4_TUD_REQ013_1	DM,	Driving behaviour	The driving style of the ego-vehicle
	ACT	overall	shall maximize comfort and time
			efficiency, while safety is strictly
			maintained

Table 5: TUD's list of requirements on EXP1

5.2 EXP2: Re-establish platoon formation after splitting due to roundabout

TECN (Demo Vehicle & Simulation)				
ID	Туре	Name	Description	
WP3_TECN_REQ1_v01	PER	Vehicle detection	The system must be able to detect and classify vehicles around itself	
WP5_TECN_REQ3_v01	GEN	Road limits	The limits of the road must be clear and provided, either statically or dynamically	
WP3_TECN_REQ4_v01	PER	Vehicle detection in advance	Subject vehicle shall be able to detect a stationary/dynamic vehicle in advance	
WP3_TECN_REQ5_v01	PER	Pedestrian detection in advance	Subject vehicle shall be able to detect a stationary/dynamic pedestrian in advance	
WP3_TECN_REQ6_v01	PER	Localization accuracy	The localization system should provide an accurate positioning for control/decision making	
WP4_TECN_REQ7_v01	DM	Localization malfunction	Subject vehicle shall be able to detect a malfunction of the localization system (accidental)	
WP4_TECN_REQ8_v01	DM	Localization degraded	Subject vehicle shall be able to detect a reduction of accuracy of the localization system (accidental)	
WP4_TECN_REQ9_v01	DM	Vehicle collision avoidance in degraded mode	DM shall be able to execute DDT (Dynamic Driving Task, defined in SAE J3016) in a degraded mode to avoid colliding with other vehicles	
WP4_TECN_REQ10_v01	DM	VRU collision avoidance in degraded mode	DM shall be able to execute DDT in a degraded mode to avoid colliding with VRUs	
WP4_TECN_REQ11_v01	DM	Fail-degraded operation	The DDT in degraded mode must have the capability of executing a MRM until a safe stopping location is reached	

WP4_TECN_REQ12_v01	DM	Platoon stability comfort (1)	The joining process must be smooth, without big speed oscillations
WP4_TECN_REQ13_v01	DM	Platoon stability comfort (2)	The joining process must be smooth, without big speed oscillations
WP4_TECN_REQ14_v01	DM	Safe braking in platooning	Once detected an obstacle (e.g. Pedestrian) the vehicle should be able to stop smoothly
WP4_TECN_REQ15_v01	DM	Fail-safe motion planning	The fail-safe motion planning must provide guidance until a safe state is reached
WP4_TECN_REQ16_v01	DM	Safe braking	Once detected an obstacle (e.g. Pedestrian) the vehicle should be able to stop timely
WP5_TECN_REQ17_v01	DM	Vehicle communications	Vehicle communication must have reasonably low latency between vehicles
WP3_TECN_REQ18_v01	GEN	Digital maps	Digital maps should specify drivable space.

Table 6: TECN's list of requirements on EXP2

	ICCS (Simulation)				
ID	Туре	Name	Description		
WP3_ICCS_REQ01_v01	PER	V2X messages reception	The system must be able to receive V2X messages from multiple observers in the vicinity of the ego- vehicle		
WP3_ICCS_REQ02_v01	PER	V2X data processing, fusion and integration	The system must be able to process, fuse and integrate the received V2X information from multiple sources		
WP3_ICCS_REQ03_v01	PER	V2X data latency	The system must be able to receive, process and integrate V2X information in a timely manner		
WP3_ICCS_REQ04_v01	PER	V2X fused data reliability	The system must be able to trust information fused from V2X from independent sources		

Table 7: ICCS's list of requirements on EXP2

5.3 EXP3: Self-assessment and reliability of perception data with complementary V2X data in complex urban environments

UULM (Demo Vehicle & Simulation)				
ID	Туре	Name	Description	
WP3_UULM_REQ	GEN	Weather	The self-assessment system shall work	
01_v01		Conditions	under certain good weather conditions	
WP3_UULM_REQ	GEN	Weather	The infrastructure V2X system shall	
02_v01		Conditions	work under certain good weather	
			conditions	

WP3_UULM_REQ 03_v01	GEN	Lighting Conditions	The self-assessment system shall work under good lighting conditions (daylight)
WP3_UULM_REQ 04_v01	GEN	Lighting Conditions	The infrastructure V2X system shall work under good lighting conditions (daylight)
WP3_UULM_REQ 05_v01	GEN	Road conditions	The self-assessment system shall work under good road conditions
WP3_UULM_REQ 06_v01	PER	Protocol communication	V2X information shall be transmitted via CAMs & CPMs with proprietary extensions
WP3_UULM_REQ 07_v01	GEN	Infrastructure pilot site	Infrastructure Pilot Site shall generate CPMs of the surveilled road area if all conditions are satisfied
WP3_UULM_REQ 08_v01	GEN	Automated Vehicle	Connected automated vehicle shall be able to drive automatically (with safety driver) if all conditions are satisfied
WP3_UULM_REQ 09_v01	PER	Detecting objects with infrastructure pilot site	Infrastructure Pilot Site must detect relevant objects in the corresponding area
WP3_UULM_REQ 10_v01	PER	Tracking objects	The connected automated vehicle shall provide an object tracking and track the relevant objects in its relevant proximity
WP3_UULM_REQ 11_v01	PER	Sensors Detections	The connected automated vehicle shall provide different sensors and sensor types delivering detections to the tracking module
WP3_UULM_REQ 12_v01	GEN	Connected Automated Vehicle	The connected automated vehicle shall be able to receive and process CPMs with proprietary extensions
WP3_UULM_REQ 13_v01	PER	Self-assessment of perception system	The self-assessment of the perception system shall generate reliability scores if all conditions are satisfied

Table 8: UULM's list of requirements on EXP3

5.4 EXP4: Decision making for motion planning when faced with roadworks, unmarked lanes and narrow roads with assistance from perception self-assessment

CRF (Demo Vehicle & Simulation)			
ID	Туре	Name	Description
WP5_CRF_REQ01_v01	GEN	Pre- Conditions to activate the function	The system shall be activated if there are no failures, if there is a driver request, if scenarios are visible (activation inside the ODD)

WP5_CRF_REQ02_v01	GEN	Conditions, when function is deactivated	The system shall be deactivated if there are failures, if there is a driver request and if scenarios are not detected (de-activation outside the ODD)
WP3_CRF_REQ03_v01	OPE	Speed Range	The system shall work in the operative speed range (50 - 140 km/h for the CRF demo car)
WP3_CRF_REQ04_v01	OPE	Weather Conditions	The system shall work in specific weather conditions
WP3_CRF_REQ05_v01	OPE	Lighting Conditions	The system shall work in specific lighting conditions
WP5_CRF_REQ07_v01	GEN	Vehicle CAN data	Provision of vehicle sensor information on CAN
WP3-4- 5_CRF_REQ08_v01	OPE	System reaction time	The system shall react in real time to the encountered situation
WP3-4- 5_CRF_REQ09_v01	GEN	Protocol communication	The components / sub-systems should exchange info via CAN bus. Alternatively, via ETHERNET
WP5_CRF_REQ10_v01	OPE	System capability and characteristics	The system shall track the speed set by the user
WP5_CRF_REQ11_v01	OPE		When the function is enabled, the system shall stop the vehicle in case of traffic jam or obstacles ahead.
WP5_CRF_REQ12_v01	OPE	. 201	When the function is enabled, the system shall be able to restart following the user set speed if the obstacle disappears.
WP5_CRF_REQ13_v01	OPE		The system shall adjust and optimize the vehicle speed in case of other vehicles entering from a highway on- ramp
WP3_CRF_REQ16_v01	OPE	Deceleration behaviour	The system shall track/follow the setpoint speed with an acceleration in the range [-3.5 - 2] m/s ²
WP3_CRF_REQ17_v01	PER	Front obstacles selection	The PP shall detect and track most relevant object in front in the vehicle lane
WP3_CRF_REQ18_v01	PER	Rear obstacles selection	The PP shall detect and track most relevant object in vehicle rear lane
WP3_CRF_REQ19_v01	PER	Detection and tracking of surrounding objects	The system shall detect and track most relevant object in vehicle front left lane, front right, rear left, rear right
WP3_CRF_REQ20_v01	PER	Speed Limits	The PP should provide the road speed limits information on CAN
WP3_CRF_REQ21_v01	PER	Road type	The PP shall provide the road type information (on CAN)

WP3_CRF_REQ22_v01	PER	Road line	The PP shall detect the road lines information (on CAN)
WP3_CRF_REQ23_v01	PER	Lane info	The PP shall provide the lane information (on CAN)
WP3_CRF_REQ24_v01	PER	Road works area	The PP shall reconstruct road lines in case of working area or faded/absent line marking
WP4_CRF_REQ25_v01	DM	Vehicle control 1	The DM shall guarantee the lateral control when road curvature is > 1/60m
WP5_CRF_REQ26_v01	OPE	Vehicle control 2	The system shall maintain the centre line when all the condition are satisfied
WP4_CRF_REQ27_v01	DM	Optimal manoeuvre	The DM shall advise if a lane change manoeuvre is convenient
WP5_CRF_REQ28_v01	OPE	Optimal manoeuvre execution 1	The system shall execute a lane change manoeuvre when all the condition are satisfied
WP5_CRF_REQ30_v01	ACT	ODD behaviour 1	The system shall decelerate with a max. long. deceleration of 7m/s2 to avoid a collision with an object if TTC is <= 3s
WP5_CRF_REQ31_v01	ACT	ODD behaviour 2	The system shall decelerate with a maximum absolute deceleration of 3m/s2 when an object is detected in the ego lane and TTC <= 5s & TTC > 3s
WP5_CRF_REQ33_v01	ACT	ODD behaviour over limits	The system shall have a steady braking and stop in the ego lane when there is no response to the take over request.

Table 9: CRF's list of requirements on EXP4

HIT	HIT-FR & HIT-UK (Demo Vehicle & Simulation)				
ID	Туре	Name	Description		
WP3_HIT_REQ1_v01	PER	Object detection and tracking	Detect and Track objects with correct class labels assigned to tracked objects		
WP3_HIT_REQ2_v01	PER	Object detection and tracking - Vehicles	Detect and Track road vehicles such as cars, trucks, vans and bicycles.		
WP3_HIT_REQ3_v01	PER	Object detection and tracking - Pedestrians	Detect and Track pedestrians		
WP3_HIT_REQ4_v01	PER	Object detection and tracking - Road Works	Track road work cones + signs.		
WP3_HIT_REQ5_v01	PER	Drivable Road Detection	Provide 2D/3D information related to drivable road. Determine regions in 2D/3D space that correspond to drivable road.		

WP3_HIT_REQ6_v01	PER	Detect Lane Marking Information	Road lines detecting from 2D data
WP3_HIT_REQ7_v01	PER	Vehicle Localisation - GNSS	Accurately localise vehicle position using GNSS measurements
WP3_HIT_REQ8_v01	PER	Vehicle Localisation - LiDAR	Accurately localise vehicle position using LiDAR data and in case GNSS fails.
WP3_HIT_REQ9_v01	PER	Object trajectory prediction	Predict tracked object trajectories, of vehicles (cars, trucks, vans, etc) and pedestrians.
WP3_HIT_REQ10_v01	OPE	Drivable Road Extraction (HD-MAP)	Provide 2D/3D information related to drivable road. Determine regions in 2D/3D space that correspond to drivable road.
WP3_HIT_REQ11_v01	OPE	Extract Lane Marking Information (HD-MAP)	Road lines detecting from 2D data

Table 10: HIT-FR's & HIT-UK's list of requirements on EXP4

TECN (Demo Vehicle & Simulation)			
ID	Туре	Name	Description
WP3_TECN_REQ1_v01	PER	Vehicle detection	The system must be able to detect and classify vehicles around itself
WP3_TECN_REQ2_v01	PER	Traffic Agents detection	The system must be able to detect and classify traffic agents around itself
WP5_TECN_REQ3_v01	GEN	Road limits	The limits of the road must be clear and provided, either statically or dynamically
WP3_TECN_REQ4_v01	PER	Vehicle detection in advance	Subject vehicle shall be able to detect a stationary/dynamic vehicle in advance
WP3_TECN_REQ5_v01	PER	Pedestrian detection in advance	Subject vehicle shall be able to detect a stationary/dynamic pedestrian in advance
WP3_TECN_REQ6_v01	PER	Localization accuracy	The localization system should provide an accurate positioning for control/decision making.
WP4_TECN_REQ7_v01	DM	Localization malfunction	Subject vehicle shall be able to detect a malfunction of the localization system (accidental)
WP4_TECN_REQ8_v01	DM	Localization degraded	Subject vehicle shall be able to detect a reduction of accuracy of the localization system (accidental)
WP4_TECN_REQ9_v01	DM	Vehicle collision avoidance in degraded mode	DM shall be able to execute DDT (Dynamic Driving Task, defined in SAE J3016) in a degraded mode to avoid colliding with other vehicles

WP4_TECN_REQ10_v01	DM	VRU collision avoidance in degraded mode	DM shall be able to execute DDT in a degraded mode to avoid colliding with VRUs
WP4_TECN_REQ11_v01	DM	Fail-degraded operation	The DDT in degraded mode must have the capability of executing a MRM until a safe stopping location is reached
WP4_TECN_REQ15_v01	DM	Fail-safe motion planning	The fail-safe motion planning must provide guidance until a safe state is reached
WP4_TECN_REQ16_v01	DM	Safe braking	Once detected an obstacle (e.g. Pedestrian) the vehicle should be able to stop timely
WP3_TECN_REQ18_v01	GEN	Digital maps	Digital maps should specify drivable space

Table 11: TECN's list of requirements on EXP4

WMG (Demo Vehicle & Simulation)			
ID	Туре	Name	Description
WP3_WMG_REQ01_v01	OPE	Speed range	The self-assessment of perception including speed limit signs shall operate at speeds 10 - 40 km/h
WP3_WMG_REQ02_v01	OPE	Weather and lighting conditions	The self assessment of perception including speed limit signs shall operate at good weather and lighting conditions.
WP3_WMG_REQ03_v01	PER	Perception self- assessment for speed limit signs detection	The system shall issue a warning when the detection of speed limit signs fail.

Table 12: WMG's list of requirements on EXP4

5.5 EXP5: Decision making for motion planning when entering a jammed highway

CRF (Demo Vehicle & Simulation)			
ID	Туре	Name	Description
WP5_CRF_REQ01_v01	GEN	Pre-Conditions to activate the function	The system shall be activated if there are no failures, if there is a driver request, if scenarios are visible (activation inside the ODD).
WP5_CRF_REQ02_v01	GEN	Conditions, when function is deactivated	The system shall be deactivated if there are failures, if there is a driver request and if scenarios are not detected (de-activation outside the ODD).

WP3_CRF_REQ03_v01	OPE	Speed Range	The system shall work in the
` _			operative speed range (50 - 140 km/h for the CRF demo car)
WP3_CRF_REQ04_v01	OPE	Weather Conditions	The system shall work in specific weather conditions
WP3_CRF_REQ05_v01	OPE	Lighting Conditions	The system shall work in specific lighting conditions
WP5_CRF_REQ07_v01	GEN	Vehicle CAN data	Provision of vehicle sensor information on CAN
WP3_CRF_REQ08_v01	OPE	System reaction time	The system shall react in real time to the encountered situation
WP3_CRF_REQ09_v01	GEN	Protocol communication	The components / sub-systems should exchange info via CAN bus. Alternatively, via ETHERNET
WP5_CRF_REQ10_v01	OPE	System capability and characteristics	The system shall track the speed set by the user
WP5_CRF_REQ11_v01	OPE		When the function is enabled, the system shall stop the vehicle in case of traffic jam or obstacles ahead.
WP5_CRF_REQ12_v01	OPE		When the function is enabled, the system shall be able to restart following the user set speed if the obstacle disappears
WP5_CRF_REQ13_v01	OPE		The system shall adjust and optimize the vehicle speed in case of other vehicles entering from a highway on- ramp
WP3_CRF_REQ14_v01	PER	Ahead obstacles detection (on ramps)	The PP shall detect the presence of other vehicle on the highway on- ramps at least 170m ahead
WP3_CRF_REQ15_v01	PER	Tracking objects (on ramps)	The PP shall detect and track most relevant object in highway on-ramp
WP3_CRF_REQ16_v01	OPE	Deceleration behaviour	The system shall track/follow the setpoint speed with an acceleration in the range [-3.5 - 2] m/s ²
WP3_CRF_REQ17_v01	PER	Front obstacles selection	The PP shall detect and track most relevant object in front in the vehicle lane
WP3_CRF_REQ18_v01	PER	Rear obstacles selection	The PP shall detect and track most relevant object in vehicle rear lane
WP3_CRF_REQ19_v01	PER	Detection and tracking of sorrounding objects	The system shall detect and track most relevant object in vehicle front left lane, front right, rear left, rear right
WP3_CRF_REQ20_v01	PER	Speed Limits	The PP should provide the road speed limits information on CAN
WP3_CRF_REQ21_v01	PER	Road type	The PP shall provide the road type information (on CAN)
WP3_CRF_REQ22_v01	PER	Road line	The PP shall detect the road lines information (on CAN)

WP3_CRF_REQ23_v01 PER Lane info The PP shall provide information (on CAN)	the lane
	the lane
WP4_CRF_REQ25_v01 DM Vehicle control 1 The DM shall guarantee	
control when road curv	/ature is >
1/60m	
WP5_CRF_REQ26_v01 OPE Vehicle control 2 The system shall maintain	
line when all the cor satisfied	idition are
WP5_CRF_REQ28_v01 OPE Optimal The system shall execu	
manoeuvre change manoeuvre wh	en all the
execution 1 condition are satisfied	
	aluate the
	ne change
execution 2 manoeuvre in case of	venicie on
highway on -ramp	
WP5_CRF_REQ30_v01 ACT ODD behaviour 1 The system shall decele	
max. long. deceleration of	-
avoid a collision with an c is <= 3s	object in FTC
WP5_CRF_REQ31_v01_ACT_ODD behaviour 2_The system shall deceler	rato with a
maximum absolute dece	
3m/s2 when an object is	
the ego lane and TTC <=	
3s	
WP5_CRF_REQ33_v01 ACT ODD behaviour The system shall have	a steadv
over limits braking and stop in the	
when there is no respo	nse to the
take over request.	

Table 13: CRF's list of requirements on EXP5

HIT-FR & HIT-UK (Demo Vehicle & Simulation)				
ID	Туре	Name	Description	
WP3_HIT_REQ1_v01	PER	Object detection and tracking	Detect and Track objects with correct class labels assigned to tracked objects	
WP3_HIT_REQ2_v01	PER	Object detection and tracking - Vehicles	Detect and Track road vehicles such as cars, trucks, vans and bicycles.	
WP3_HIT_REQ3_v01	PER	Object detection and tracking - Pedestrians	Detect and Track pedestrians	
WP3_HIT_REQ5_v01	PER	Drivable Road Detection	Provide 2D/3D information related to drivable road. Determine regions in 2D/3D space that correspond to drivable road.	
WP3_HIT_REQ6_v01	PER	Detect Lane Marking Information	Road lines detecting from 2D data	

WP3_HIT_REQ7_v01	PER	Vehicle Localisation - GNSS	Accurately localise vehicle position using GNSS measurements
WP3_HIT_REQ9_v01	PER	Object trajectory prediction	Predict tracked object trajectories, of vehicles (cars, trucks, vans, etc) and pedestrians.
WP3_HIT_REQ10_v01	OPE	Drivable Road Extraction (HD-MAP)	Provide 2D/3D information related to drivable road. Determine regions in 2D/3D space that correspond to drivable road.
WP3_HIT_REQ11_v01	OPE	Extract Lane Marking Information (HD- MAP)	Road lines detecting from 2D data

Table 14: HIT-FR's & HIT-UK's list of requirements on EXP5

TECN (Demo Vehicle & Simulation)			
ID	Туре	Name	Description
WP3_TECN_REQ1_v01	PER	Vehicle	The system must be able to detect
		detection	and classify vehicles around itself
WP5_TECN_REQ3_v01	GEN	Road limits	The limits of the road must be clear
			and provided, either statically or
			dynamically
WP3_TECN_REQ4_v01	PER	Vehicle	Subject vehicle shall be able to
		detection in	detect a stationary/dynamic vehicle
		advance	in advance
WP3_TECN_REQ5_v01	PER	Pedestrian	Subject vehicle shall be able to
		detection in	detect a stationary/dynamic
		advance	pedestrian in advance
WP3_TECN_REQ6_v01	PER	Localization	The localization system should
· · · ·		accuracy	provide an accurate positioning for
			control/decision making.
WP4_TECN_REQ16_v01	DM	Safe braking	Once detected an obstacle (e.g.
			Pedestrian) the vehicle should be
V X			able to stop timely
WP3_TECN_REQ18_v01	GEN	Digital maps	Digital maps should specify drivable
			space

Table 15: TECN's list of requirements on EXP5

5.6 EXP6: Small object detection at a far range in adverse weather conditions

APTIV (Demo Vehicle & Simulation)			
ID Type Name Description			
WP5_CRF_REQ32_v01	АСТ	ODD behaviour 3	The system shall adapt its speed to drive safely (taking also comfort of passengers into account)
WP5_APTIV_REQ001_1	OPE	ODD - Driveable area	The system shall function in highways

		ſ	
WP5_APTIV_REQ002_1	OPE	ODD - Temporary objects	The system shall react to small objects in the ego lane to avoid a collision, reduce severity of collision or drive over them safely when adjacent lanes are not available for driving
WP5_APTIV_REQ003_1	OPE	ODD - Traffic	The system shall take into account vehicles in its rear while decelerating
WP5_APTIV_REQ004_1	OPE	ODD - Weather conditions	The system shall function in the presence of rain and fog
WP5_APTIV_REQ005_1	OPE	ODD - Weather conditions	The system shall function in the presence of snow
WP5_APTIV_REQ006_1	OPE	ODD - Illumination	The system shall function at day and night
WP5_APTIV_REQ007_1	OPE	ODD - Ego Vehicle	The system shall be enabled in a speed range of 30 to 130 km/h
WP3_APTIV_REQ008_1	PER	Small object detection	The system shall be capable of detecting small objects ahead of the vehicle with a minimum dimension of 10cm (h) x 10cm (w) in the ego lane at a minimum range required for a safe reaction (depending on the speed)
WP3_APTIV_REQ009_1	PER	Object classification	The system shall classify the detected object as overdriveable or non-overdrivable
WP3_APTIV_REQ010_1	PER	Object classification	The system shall consider an object as overdriveable if it can be driven over without: 1) destabilizing the vehicle 2) causing any form of damage to the vehicle or 3) causing any form of injury to the driver or passengers
WP3_APTIV_REQ011_1	OPE	ODD detection	The system shall detect if it is outside its ODD
WP4_APTIV_REQ012_1	DM	ODD detection	The system shall be outside ODD if an object is detected but not classified when collision is imminent: Time to collision (TTC) < 3,1 sec
WP4_APTIV_REQ013_1	DM	Outside ODD behaviour	The system shall issue a take over request if it detects outside ODD condition
WP4_APTIV_REQ014_1	DM, ACT	Outside ODD behaviour	The system shall have a steady braking and stop in the ego lane when there is no response to the take over request

WP4_APTIV_REQ015_1	DM, ACT	Initial behaviour	The system shall decelerate with a maximum absolute deceleration of 3m/s2 when an object is detected in the ego lane and TTC <= 6,1 sec and TTC > 3,1 sec
WP4_APTIV_REQ016_1	DM, ACT	Behaviour for Overdriveable object	The system shall adapt its speed to safely drive over an overdriveable object such that the motion profile of the vehicle stays within comfortable limits for the passengers
WP4_APTIV_REQ017_1	DM, ACT	Behaviour for non- overdriveable object	The system shall decelerate with a maximum absolute deceleration of 7m/s2 to avoid a collision with a non-overdriveable object when TTC is <= 3,1sec

Table 16: APTIV's list of requirements on EXP6

5.7 EXP7: Localization/perception self-assessment and other vehicles' behaviour prediction under adverse weather or adverse road conditions

	WMG (Demo Vehicle & Si	mulation)
ID	Туре	Name	Description
WP3_WMG_REQ04_v01	OPE	Speed range	The integrity monitoring mechanism of the distance estimation to the front vehicle shall operate at speeds 60 - 100 km/h along a motorway
WP3_WMG_REQ05_v01	OPE	Weather conditions	The integrity monitoring mechanism of the distance estimation to the front vehicle shall operate under adverse weather or lighting conditions along a motorway
WP3_WMG_REQ06_v01	PER	Integrity monitoring of the distance estimation to the leading vehicle in motorway chauffeur	The system shall issue a warning when the distance estimation to the leading vehicle in motorway chauffeur fails
WP3_WMG_REQ07_v01	OPE	Speed range	The integrity monitoring mechanism for GNSS-based localisation for urban chauffeur shall operate at speeds up to 40 km/h

WP3_WMG_REQ08_v01	PER	Integrity	The system shall issue a warning
		monitoring of	when the GNSS-based localisation
		GNSS-based	fails
		localisation in	
		urban chauffeur	

Table 17: WMG's list of requirements on EXP7

	ICCS	(Demo Vehicle & S	imulation)
ID	Туре	Name	Description
WP4_ICCS_REQ05_v01	PER	Behavior prediction of other vehicles accuracy	The system must be able to predict the behavior of other vehicles by classifying manoeuvres into predefined classes (e.g. lane change to the right, lane change to the left, cut-in from the left), with certain minimum accuracy
WP4_ICCS_REQ06_v01	PER	Behavior prediction of other vehicles reliability	The system must be able to predict the behavior of other vehicles, by classifying manoeuvres into predefined classes (e.g. lane change to the right, lane change to the left, cut-in from the left), with a certain probabilistic certainty
WP4_ICCS_REQ07_v01	PER	Behaviour prediction of other vehicles robust under object-level uncertainty due to bad weather conditions	The system must be able to maintain prediction accuracy and reliability under challenging weather conditions
WP4_ICCS_REQ08_v01	GEN	Behavior prediction of other vehicles: input scenarios	The simulation environment must provide scenario data involving tracked objects trajectories as inputs for the SuT
WP4_ICCS_REQ09_v01	OPE	Behavior prediction of other vehicles: challenging OD	The simulation environment must provide scenario data involving challenging weather conditions like rain or fog

Table 18: ICCS's list of requirements on EXP7

5.8 EXP8: Driving minor road under adverse weather conditions incl. perception self-assessment

	S4 (Demo Vehicle & Simulation)													
ID	Туре	Name	Description											
WP5_S4_REQ001_V1	OPE	ODD - zone	The system shall operate on minor roads											
WP5_S4_REQ002_V1	OPE	ODD - subject vehicle	The system shall operate at speeds 032km/h											

WP5_S4_REQ003_V1 OPE ODD - weather conditions The system shall ope WP5_S4_REQ004_V1 OPE ODD - weather The system shall	
WDE SA RECOON VI OPE OPP weather The system shall	
conditions snowing	operate in light
	erate in presence of
surface snow or ice on the r	oad surface
conditions	
	provide estimate of
WP3_S4_REQ007_V1 PER Sensor Visibility The system shall a	
adaptation based on changes in	
	provide estimate of
Obstruction amount of sensor of	ostruction
estimation	
WP3_S4_REQ009_V1 PER Sensor The system shall	
Obstruction based on changes in	n sensor obstruction
adaptation	
WP3_S4_REQ010_V1 PER Localization Localization Sensing	
	ate of reliability of
Monitoring localization sensor	
	oility threshold
parameter, Lidar	•
estimate and sensor	r obstruction
WP4_S4_REQ011_V1 DM Path plan System shall plan a	a safe path around
around block static obstacle	
WP4_S4_REQ012_V1 OPE Path plan dynamically plann	-
verification obstacle should be v	verifiable by remote
operator before exe	ecution
WP4_S4_REQ013_V1 DM Out of ODD The system shall det	tect out of ODD and
situations that requi	ire remote operator
assistance and notif	y the operator
WP4_S4_REQ014_V1 DM Fail safe The system shall a	pply minimum risk
operation control strategy in	n case of system
malfunction or une	expected situations
that cannot be hand	lled by the system

Table 19: S4's list of requirements on EXP8

6. Requirements' Analysis

In this section, an analysis of the collected requirements is provided, including graphs that give an overall picture of the requirements.

6.1 Collected Requirements: Results

A total of 135 requirements were collected from all 9 partners. In Figure 11, the total number of requirements per partners is shown, in which CRF has the larger number of requirements, justified by being part of two, one of which end-to-end, experiments, followed by TECN, which participates in three experiments. In Figure 12, the total number of requirements per demonstrator is presented. The name of a partner (e.g., APTIV) indicates that the experiment will be implemented in the corresponding partner's demo vehicle (e.g., Demo Vehicle of "APTIV" partner), while, the tag "CARLA" indicates that the experiments will be implemented in the CARLA simulator environment. Again, the larger number of requirements are part of the experiments implemented on CRF's demo vehicle, followed by CARLA, which is going to be used in multiple experiments.

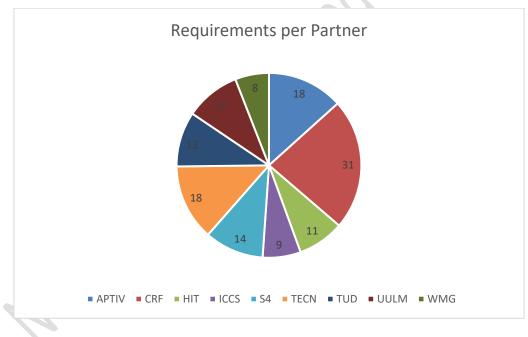


Figure 11: Number of requirements per partner

In Figure 13, the total number of requirements per type/category is shown, with the results (in percentage) being the following:

- General GEN: 10,6%
- Decision Making DM: 18,3%
- Perception PER: 36,6%

- Operational OPE: 26,8%
- Actuation ACT: 7,7%

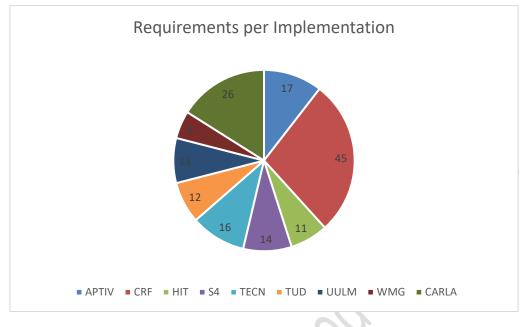
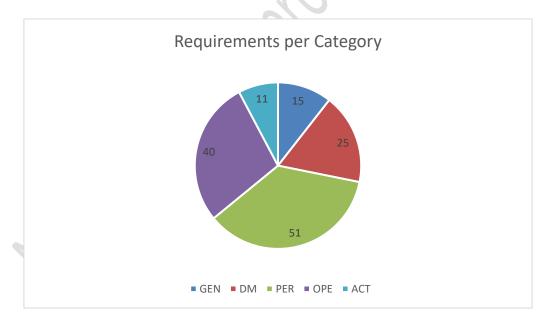



Figure 12: Number of requirements per implementation/demonstration

Figure 13: Requirements per type/category

The vast majority of requirements refers to *Perception, Operational* and *Decision Making*, which is expected considering the nature and the objectives of the EVENTS project that focuses on the perception and decision-making in complex situations, implemented on demonstrators in selected scenarios.

Figure 14 depicts the total number of requirements per experiment. Experiments 4 (EXP4) and 5 (EXP5) have the larger number of requirements justified by the high number of participating partners, four and three respectively, as well as by the fact that EXP4 is an end-to-end experiment.

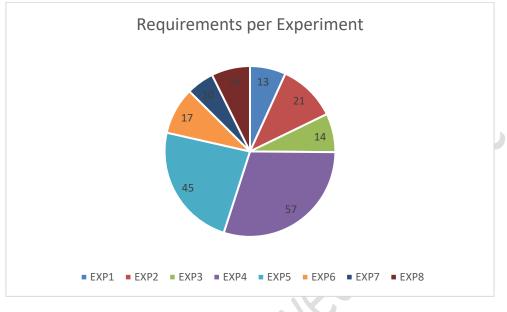


Figure 14: Requirements per experiment (EXP)

6.2 Summary of Requirements

In summary, a total number of 135 requirements have been collected, categorized in General, Decision-Making, Perception, Operational and Actuation. The full list of requirements can be found in the Annex 3.

During the project development cycle, the requirements will be translated into objective Key Performance Indicators (KPIs). In turn, the KPIs will be used to assess and evaluate whether the performance of the system as a whole as well as the performance of the system's individual components are in accordance with the defined requirements. The KPIs will provide the basis for the definition of the evaluation plans and the actual evaluations undertaken in the different WPs and – more importantly – in WP6.

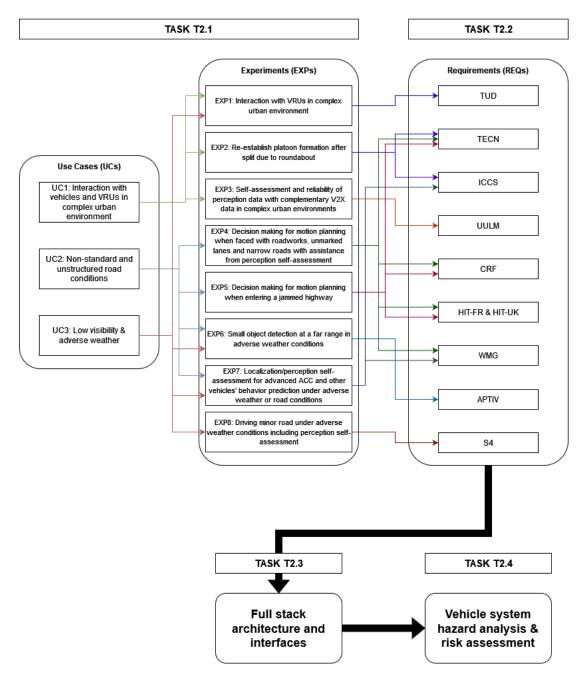
Finally, it should be noted that a list of requirements is a "living list", in the sense that requirements can be added, refined, or even removed, during the development process throughout the project. Still, this uncertainty is, to an extent, captured through the prioritization of the requirements in High (H), Medium (M) and Low (L).

7. Conclusions

The main goal of this document is to define the eight experiments (EXPs) that will be carried out throughout the EVENTS project, based on three pre-defined use cases (UCs), and the associated user and system requirements (REQs). The UCs have been previously defined in the Grant Agreement (GA) and focus on complex scenarios (urban, non-structured environment, adverse weather conditions, and so on) and vulnerable road users (VRUs) scenarios, especially where possible contradictions appear between the decision-making and regulations. This selection has been guided by the previous experience of the partners in EU projects in the same field of autonomous driving (AD), especially where (extensive) pilots have been carried out (e.g., "L3-Pilot" and "EuroFot"). In turn, the eight EXPs are defined either strictly under one UC (e.g., EXP1 is under UC1) or as a combination of more than one UCs (e.g., EXP7 is a combination of UC2 & UC3). The EXPs are defined in such a way as to harness, on the one hand, the expertise of the project's partners, as well as, on the other hand, cover a wide range of operational design domains (ODDs) and scenarios, while at the same time be consistent with the UCs, as those were initially defined in the GA and later fine-tuned in this document.

Based on that, the REQs have been determined and specified, considering the diversity of the UCs in their respective operational domains (see Section 3). A total of 135 functional requirements have been collected, categorised in General, Decision-Making, Perception, Operational and Actuation. The vast majority of the requirements refers to Perception, Operational and Decision-Making.

The UCs, the EXPs and the related REQs presented in this document will form the basis for the definition of the system's functional architecture, which is the next task in the project (WP2/T2.3) and subsequently, the topic of the next deliverable (D2.2). In particular, the five categories of requirements (general, decision-making, perception, operational and actuation) will be assigned into the functional blocks of the proposed system architecture and further decomposed into their individual components. In task T2.3, the necessary sensor suites, capable of dealing with the selected use cases, will be proposed and optimized in terms of performance and cost.


References

- [1] International Organization for Standardization. (2022). Road vehicles Safety of the intended functionality (ISO Standard No. 21448:2022)
- [2] International Organization for Standardization. (2022). Road vehicles Test scenarios for automated driving systems (ISO Standard No. 34501:2022)
- [3] Go, K. & Carroll, J.M. (2004): The blind men and the elephant: Views of scenario-based system design, Interactions, vol. 11, no. 6, pp. 44–53.
- [4] Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F. & Maurer, M. (2015): Defining and Substantiating the Terms Scene, Situation and Scenario for Automated Driving. IEEE International Annual Conference on Intelligent Transportation Systems (ITSC), Las Palmas, Spain, pp. 982-988.

Annex 1. Detailed WP2 Workflow

EVENTS - WP2

Annex 2. Use Cases and Experiments Template

In this section, the template for the collection of the experiments is presented.

	neral Info
UC Title	
Leading Partner	
Partners Involved	
Reference Use Case	
S	cenario
Short Verbal Description	
Detailed Graphical Description	
Initial Assumptions	
Actors' Contribution	
Actors' Interaction	
Traffic & Environment	
Traffic Participants' (TPs)	
Attributes	
Autonomous Vehicle's (AV)	
Attributes	
Limitations	
Other relevant information	
Ve	hicle Info
Model	
Communication	
Sensors	
	Data
Availability	
Format	
Openness	
	valuation
KPIs	
Comments	

Annex 3. Detailed List of Requirements

In this annex, the template of the EXCEL table for the requirements collection as well as the complete list of all the requirements are presented.

6 10 11 12 13 14 2 3 4 5 7 8 9 ID Type/Category Name Description Rationale Metrics Relevance Status Owner Reference UC Implementation Dependencies Conflicts Review Comments / Notes

Table 21: EXCEL template for requirements collection.

The requirement collection consisted of a total of 15 attributes/columns, which have been explained in more detail in Section 4.2. In the following pages, all the collected requirements are listed, including all their attributes.

It should be noted that all values in the column "Metrics" are preliminary and might change upon fine-tuning the setup of each experiment.

	1	2	3	4	5	6	7	8	0	10	11	12	13	14	15
ID		at.	Name	Description	Rationale	Metrics	Relevance	-	Owner	Experiments		Dependencies	-		Comments / Notes
1 WP5_0 REQ0 01	RF GE	N	Pre- Conditions to	The system shall be activated if there are no failures, if there is a driver request, if scenarios are visible (activation inside the ODD).	Identification of	Check of failures, check driver answer and check outputs from PP. [QUALIT.]		NA	CRF	EXP4 EXP5	CRF demo vehicle	•	Any	NA	
2 WP5_0 _REQ0 01				The system shall be deactivated if there are failures, if there is a driver request and if scenarios are not detected (de-activation outside the ODD).	Identification of condition to deactivate the function	Check of failures, check driver answer and check outputs from PP. [QUALIT.]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	
3 WP3_0 _REQ0 01		E	Speed Range	The system shall work in the operative speed range (50 - 140 km/h for the CRF demo car)	a range of velocity	50 - 140 km/h for CRF demo car (motorways and extra-urban). When active, the system can work also in the range 0 - 50 km/h.	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	T3.5
4 WP3_0 _REQ0 01			Weather Conditions	The system shall work in specific weather conditions	Necessary to define the weather conditions, where the system can work: sunny, cloudy, light rain; no heavy rain, fog and snow.	Check on trial, if the system works in the requested conditions. [QUALIT.]	-00	NA O ^{NC}	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	T3.5
5 WP3_C _REQ0 01			Lighting Conditions	The system shall work in specific lighting conditions	Necessary to define the lighting conditions where the system can work: day time (and not nightime or sunset/sunrise.	Check on trial if the system works in the requested conditions. [QUALIT.]	Ø	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	T3.5
6 WP5_C _REQ0 01			Vehicle CAN data	Provision of vehicle sensor information on CAN	Necessary inputs for PP (camera, LiDAR, etc.) and planning.	Availability of: steering wheel angle, wheel speed, yaw rate, windscreen wiper and gear accelerations (x, y) [QUALIT]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	
7 WP3_0 _REQ0 01			System reaction time	The system shall react in real time to the encountered situation	To guarantee the safety of the system and of the vehicle.	Proposed max. value: 100ms [QUANTIT]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	This means that the maximum delay of each sub-system (PP, DM, etc.) can be 100ms. Task T3.4 & T3.5
8 WP3_C _REQ0 01		I		The components / sub- systems should exchange info via CAN bus. Alternatively, via ETHERNET	To make the internal communication easier and in "real- time".	Check on trial, that all necessary messages are present. [QUALIT.]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	Т3.4 & Т3.5
9 WP5_0 REO1		I	System capability and		The system has to present certain	When the function is enabled, the control	н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	Referred to the function

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ID	Cat.	Name	Description	Rationale	Metrics	Relevance	Status	Owner	-		Dependencies	-		Comments / Notes
WP5_CRF _REQ11_v 01	OPE	characteristics	When the function is enabled, the system shall stop the vehicle in case of traffic jam or obstacles ahead.	features, such as:	must track the set- speed with a SS error of *** When active, the	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	
WP5_CRF _REQ12_v 01	OPE		When the function is enabled, the system shall be able to restart following the user set speed if the obstacle disappears.	situations, and so on.	system shall be able to track the speed to 0 kph. Check on trial that the	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	
WP5_CRF _REQ13_v 01	OPE		The system shall adjust and optimize the vehicle speed in case of other vehicles entering from a highway on ramp		command is executed. [QUALIT.]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	
WP3_CRF _REQ14_v 01		ramps)	The PP shall detect the presence of other vehicle on the highway on-ramps at least 170m ahead	range	Measurement of detection range [QUANTIT.]	н	NA	CRF	EXP5	CRF demo vehicle	NA	NA	NA	Considering the ego vehicle travelling at 130 km/h and the obstacle at 40 km/h.
WP3_CRF _REQ15_v 01	PER	Tracking objects (on ramps)	The PP shall detect and track most relevant object in highway on-ramp	To track objects on ramps entering the motorway	Check on trial that the entering object is present and tracked. [QUALIT.]	н	NA	CRF	EXP5	CRF demo vehicle	NA	NA	NA	Availability of: relative speed, distance and position
WP3_CRF _REQ16_v 01	OPE	Deceleration behaviour	The system shall track/follow the setpoint speed with an acceleration in the range [-3.5 - 2] m/s ²	To define acceptable acceleration behaviour (in terms of performances and comfort)	acceleration value. [QUANTIT.]	300	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	
WP3_CRF _REQ17_v 01	PER	Front obstacles selection	The PP shall detect and track most relevant object in front in the vehicle lane	To select the most relevant (critical) object in front of the ego-vehicle	Check on trial that the object ahead on the same lane is present and tracked. [QUANTIT.]		NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	Availability of: relative speed, distance and position
WP3_CRF _REQ18_v 01	PER	Rear obstacles selection	The PP shall detect and track most relevant object in vehicle rear lane	To select the most relevant (critical) object from the rear of the ego-vehicle	Check on trial that the rear object(s) is/are present and tracked. [QUANTIT.]	н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	Availability of: relative speed, distance and position
WP3_CRF _REQ19_v 01	PER	Detection and tracking of sorrounding objects	The system shall detect and track most relevant object in vehicle front left lane, front right, rear left, rear right	To detect and track the objects sorrounding the ego- vehicle	Check on trial that relevant objects around the AD vehicle are considered. [QUANTIT.]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	Availability of: relative speed, distance and position
WP3_CRF _REQ20_v 01		Speed Limits	The PP should provide the road speed limits information on CAN	To know and regulate vehicle speed limits	Check on trial. [QUANTIT.]	м	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	TBD if available.
WP3_CRF _REQ21_v 01	PER	Road type	The PP shall provide the road type information (on CAN)	To know the type of road	Check on trial that type of road is present. [QUANTIT.]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	

	1	2	3	4	5	6	7	8	q	10	11	12	13	14	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	-	Owner	-	Implementation	Dependencies	-		Comments / Notes
21	WP3_CRF _REQ22_v	PER	Road line	The PP shall detect the road lines information (on	To know how the road is in the future,	Check on trial that such a info is present.		NA	CRF	EXP4 EXP5		•	NA	NA	Availability of: curvature, curvature dervative, angle,
	01				with its main characteristics, such as curvature	[QUANTIT.]									lateral offset from lane center, exist prob, Left and right lanes
22	WP3_CRF _REQ23_v 01		Lane info	The PP shall provide the lane information (on CAN)	To know the structure of the lanes and their number	Check on trial that such a info is present. [QUANTIT.]	н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	Availability of: number of lanes, current lane number
23	WP3_CRF _REQ24_v 01	PER	Road works area	road lines in case of working area or		Check on trial that road- works are present and correctly localized and if reconstructed lanes are within the error margin. [QUANTIT.]	Н	NA	CRF	EXP4	CRF demo vehicle	NA	NA	NA	
24	WP4_CRF _REQ25_v 01	DM	Vehicle control	lateral control when road	For controllability at low velocities and high curvatures	Check on trial, measuring the value. [QUANTIT.]	Н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	
25	WP5_CRF _REQ26_v 01		Vehicle control 2	The system shall mantain the center line when all the condition are satisfied	For lateral controllability	Lateral error (TBD threshold) [QUANTIT.]	н	NA	CRF	EXP4 EXP5	CRF demo vehicle	NA	NA	NA	When the function is enabled, the control must track the lane center with a lateral maximum error of TBD m
26	WP4_CRF _REQ27_v 01		Optimal maneuver	lane change maneuver is convenient	about the best maneuver to act	Optimization parameters (TBD) are satisfied [QUANTIT.]	2091	NA	CRF	EXP4	CRF demo vehicle			NA	
27	WP5_CRF _REQ28_v 01		Optimal maneuver execution 1	The system shall execute a lane change maneuver when all the condition are satisfied	Actuation of the best selected maneuver	Check on trial that the maneuver is executed. Measurements of comfort and safety will be considered (*). [QUALIT.]	67 -	NA	CRF	EXP4 EXP5	CRF demo vehicle	WP3_CRF_REQ 22_v01 WP3_CRF_REQ 32_v01 WP3_CRF_REQ 24_v01		NA	Especially for scenarios with road- works. (*) This includes lateral and longitudinal acceleration of the maneuver, error of the final lateral position, minimum distance from the obstacke ahead in the new lane (if present). etc.
28	WP5_CRF _REQ29_v 01		Optimal maneuver execution 2	The system shall evaluate the convenience of a lane change maneuver in case of vehicle on highway on - ramp	Actuation of the best selected maneuver	Check on trial. Measurements of comfort and safety will be considered (*). [QUALIT.]	Н	NA	CRF	EXP5	CRF demo vehicle	WP3_CRF_REQ 22_v01 WP3_CRF_REQ 32_v01 WP3_CRF_REQ 24_v01		NA	(*) This includes lateral and longitudinal acceleration of the maneuver, error of the final lateral position, minimum distance from the obstacke ahead in the new lane (if present), etc.
29	WP5_CRF _REQ30_v 01	ACT	ODD behaviour 1	The system shall decelerate with a max. long. deceleration of 7m/s2 to avoid a collision with an object if TTC is <= 3s	, ,	1. Maximum deceleration required to come to a full stop. 2. Distance to obstacle after stop 3.	L	NA	CRF	EXP4 EXP5	CRF demo vehicle		NA	NA	Thresholds shall be confirmed.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
<u> </u>	ID	Cat.	Name	4 Description	Rationale	Metrics	Relevance			Experiments		Dependencies			Comments / Notes
	WP5_CRF _REQ31_v 01			The system shall decelerate with a maximum absolute deceleration of 3m/s2 when an object is detected in the ego lane and TTC <= 5s & TTC > 3s	To avoid high levels of unintended braking		H	Status	CRF	EXP4 EXP5	CRF demo vehicle	Dependencies	NA	NA	Thresholds shall be confirmed.
	WP5_CRF _REQ32_v 01	ACT	ODD behaviour 3	The system shall adapt its speed to drive safely (taking also comfort of passengers into account)	Behaviour when object is overdriveable	Motion profile of the object while driving over the object	н		APTIV	EXP3 EXP4	CRF demo vehicle		NA	NA	
	WP5_CRF _REQ33_v 01		over limits	The system shall have a steady braking and stop in the ego lane when there is no response to the take over request.	System behaviour outside ODD and no response to take over request	NA	L		CRF	EXP4 EXP5	CRF demo vehicle		NA	NA	
	WP3- 5_UULM_ REQ01_v0 1	GEN	Weather Conditions	The self-assessment system shall work under certain good weather conditions	Necessary to define the weather conditions, where the self-assessment of the perception system can work: good weather conditions (sunny, cloudy)	Check on trial. [QUALIT.]	+	NA		EXP3	UULM demo vehilce	NA	NA	NA	
	WP3- 4_UULM_ REQ02_v0 1	GEN	Weather Conditions	The infrastructure V2X system shall work under certain good weather conditions	Necessary to define the weather conditions, where the infrastructure perception system can work: good weather conditions (sunny, cloudy)	Check on trial. [QUALIT.]	<u>*</u> 2×	NA	UULM	EXP3	UULM pilot site	NA	NA	NA	
	WP3- 5_UULM_ REQ03_v0 1	GEN	Lighting Conditions	The self-assessment system shall work under good lighting conditions (daylight)	Necessary to define the lighting conditions, where the self-assessment of the perception system can work: good lighting conditions (sunny, davlight)	Check on trial. [QUALIT.]	Н	NA	UULM	EXP3	UULM demo vehilce	NA	NA	NA	
	WP3- 4_UULM_ REQ04_v0 1	GEN	Lighting Conditions	The infrastructure V2X system shall work under good lighting conditions (daylight)		Check on trial. [QUALIT.]	H	NA	UULM	EXP3	UULM pilot site	NA	NA	NA	

	1	2	3	4	5	6	7	8	٥	10	11	12	13	14	15
-	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	-	Owner	Experiments	Implementation	Dependencies			Comments / Notes
37	WP3_UUL M_REQ05 _v01		Road conditions Protocol	The self-assessment system shall work under good road conditions	Necessary to define	Check on trial. [QUALIT.]	H	NA	UULM	EXP3	UULM demo vehilce UULM pilot site	NA	NA	NA	
	4_UULM_ REQ06_v0 1		communication	transmitted via CAMs & CPMs with proprietary extensions	connected automated vehicles with compatible data interface available	[QUALIT.]					,C				
39	4_UULM_ REQ07_v0 1		Infrastrature pilot site	Infrastrature Pilot Site shall generate CPMs of the surveilled road area if all conditions are satisfied	Necessary for V2X augmented perception	Check on trial. [QUALIT.]	H	NA	UULM	EXP3	UULM pilot site	NA	NA	NA	
40	WP3_UUL M_REQ08 _v01		Automated Vehicle	Connected automated vehicle shall be able to drive automatically (with safety driver) if all conditions are satisfied	Necessary for implementing the experiment	Check on trial. [QUALIT.]	н	NA	UULM	EXP3	UULM demo vehilce	NA	NA	NA	
41	WP3- 4_UULM_ REQ09_v0 1	PER	Detecting objects with infrastrature pilot site	Infrastrature Pilot Site must detect relevant objects in the corresponding area	Necessary for augment the onboard perception of the ego-vehicle and as input for the tracking algorithm	Check on trial. [QUALIT.]	200	NA	UULM	EXP3	UULM pilot site	NA	NA	NA	
42	5_UULM_ REQ10_v0 1		Tracking objects	The connected automated vehicle shall provide an object tracking and track the relevant objects in its relevant proximity	Necessary for the self-asssessment of the perception system is a running object tracking	Check on trial. [QUALIT.]	Н	NA	UULM	EXP3	UULM demo vehilce	NA	NA	NA	
43	WP3- 5_UULM_ REQ11_v0 1	PER	Sensors Detections	The connected automated vehicle shall provide different sensors and sensor types delivering detections to the tracking module	Necessary for the self-asssessment perception system that it is able to detect single failures	Check on trial. [QUALIT.]	H	NA	UULM	EXP3	UULM demo vehilce	NA	NA	NA	
44	WP3_UUL M_REQ12 _v01		Connected Automated Vehicle	The connected automated vehicle shall be able to receive and process CPMs with proprietary extensions		Check on trial. [QUALIT.]	Н	NA	UULM	EXP3	UULM demo vehilce	NA	NA	NA	
45	WP3- 5_UULM_ REQ13_v0 1	PER	Self- assessment of perception system	The self-assessment of the perception system shall generate reliability scores if all conditions are satisfied	Perception self- asssessment is necessary for experiment	Self-assessment scores are calculated	Н	NA	UULM	EXP3	UULM demo vehilce	NA	NA	NA	

	1	2	3	4	5	6	1 7	8	9	10	11	12	13	14	
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	-		10	Implementation				Comments / Notes
6	WP3_TEC		Vehicle	The system must be able to		Reliability of 85% or	н	Not	TECN	EXP2	TECN Twizy	NA	NA	NA	connents / Notes
	N_REQ1_		detection	detect and classify vehicles	safety with	higher [QUANTIT.]	l	Fulfille		EXP4					
	v01		detection	around itself	unreliable			d		EXP5					
	101							ľ		LAFJ					
					surrounding										
, ,	WP3 TEC		Troffic Acouto	The system must be able to	information	Reliability of 85% or	н	Not	TECN	EXP4	CARLA / CRF	NA	NA	NA	
	- 1	PER	Traffic Agents	The system must be able to	DM cannot ensure	· ·	lu l		TECN	EXP4	· ·	NA	INA	INA	
	N_REQ2_		detection	detect and classify traffic	safety with	higher [QUANTIT.]		Fulfille			Demo Veh.				
'	v01			agents around itself	unreliable			d							
					surrounding										
_					information										
	WP5_TEC	GEN	Road limits		DM needs that	NA	н	Not	TECN	EXP2	CRF demo vehicle	NA	NA	NA	
	N_REQ3_			be clear and provided,	information so the			Fulfille		EXP4					
	v01			either statically or	vehicle does not go			d		EXP5					
				dynamically	offroad						100				
	WP3_TEC	PER	Vehicle	Subject vehicle shall be	To know in advance	Detection at least in the	M	Not	TECN	EXP2	TECN Twizy	T4.3	NA	NA	
	N_REQ4_		detection in	able to detect a	the surrounding	equivalent distance of 5		Fulfille		EXP4	\sim				
	v01		advance	stationary/dynamic vehicle	agents	seconds. Check on trial.		d		EXP5	\checkmark				
				in advance	-	[QUALIT.]				0,	-				
										5					
) '	WP3 TEC	PER	Pedestrian	Subject vehicle shall be	To know in advance	Detection at least in the	М	Not	TECN	EXP2	TECN Twizy	T4.3	NA	NA	
	N REQ5		detection in	able to detect a	the surrounding	equivalent distance of 5		Fulfille		EXP4	,				
	v01		advance	stationary/dynamic	agents	seconds.Check on trial.		d	~	EXP5					
			duvunce	pedestrian in advance	agento	[QUALIT.]		ľ	\sim						
									\circ						
	WP3 TEC	PFR	Localization	The localization system	To properly obtain	Position error should be	м	Not	TECN	EXP2	TECN Twizy /	T4.3	NA	NA	
	N_REQ6_		accuracy	should provide an accurate	the vehicle	less than 10cm		Fulfille		EXP4	Carla				
	v01		accuracy	positioning for	localization	[QUANTIT.]		d		EXP5	Carla				
	101				IOCAIIZACION		~	w.		EAPS					
2 1	WP4_TEC	DM	Localization	control/decision making. Subject vehicle shall be	To know the system	Check on trial.	M	Not	TECN	EXP2	TECN Twizy /	T4.3	NA	NA	
	N_REQ7_	DIVI	malfunction	able to detect a	health in order to	[QUALIT.]		Fulfille	ILCIN	EXP2	Carla	14.5	INA		
			manunction				22	d		EXP4	Cdrid				
'	v01			malfunction of the	trigger safe	1	~	a							
				localization system	operational control	17									
3				(accidental)		· · · · · · · · · · · · · · · · · · ·									
	WP4_TEC	DM		Subject vehicle shall be	To know the system	Positioning error of	м	Not	TECN	EXP2	TECN Twizy /	T4.3	NA	NA	
	N_REQ8_		degraded	able to detect a reduction	health in order to	more than 20cm or		Fulfille		EXP4	Carla				
	v01			of accuracy of the	trigger safe	more. Check on trial.		d							
				localization system	operational control	[QUALIT.]									
				(accidental)	~	\vee									
	WP4_TEC	DM	Vehicle	DM shall be able to	To ensure safety	Check on trial.	м	Not	TECN	EXP2	TECN Twizy /	T4.3	NA	NA	
	N_REQ9_		collision	execute DDT (Dynamic	10	[QUALIT.]		Fulfille		EXP4	Carla				
	v01		avoidance in	Driving Task, defined in SAE	6-0			d							
			degraded mode	J3016) in a degraded mode											
			-	to avoid colliding with											
				other vehicles											
	WP4_TEC	DM	VRU collision	DM shall be able to	To ensure safety	Check on trial.	М	Not	TECN	EXP2	TECN Twizy /	T4.3	NA	NA	
	N_REQ10		avoidance in	execute DDT in a degraded		[QUALIT.]		Fulfille		EXP4	Carla				
	v01		degraded mode	mode to avoid colliding				d							
			-	with VRUs											
5	WP4_TEC	DM	Fail-degraded	The DDT in degraded mode	To ensure safety	Check on trial.	М	Not	TECN	EXP2	TECN Twizy /	T4.3	NA	NA	
	N_REQ11		operation	must have the capability of	,	[QUALIT.]		Fulfille		EXP4	Carla				
	v01			executing a MRM until a		· ·		d							
				safe stopping location is				Ĩ							
1				reached											
	1														

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ID	Cat.	Name	Description	Rationale	Metrics	-	<u> </u>		-	Implementation	Dependencies			Comments / Notes
WP4_TEC N_REQ12 _v01		Platoon stability comfort (1)	The joining process must be smooth, without big speed oscilations		peak<110%reference [QUANTIT.]	H	Not Fulfille d	TECN	EXP2	TECN Twizy / Carla	Dependencies	connects	nenew	To measure correctly this requirement the Joining maneuvre must be performed with a constant speed
WP4_TEC N_REQ13 _v01	DM	Platoon stability comfort (2)	The joining process must be smooth, without big speed oscilations	Instabilty problems in dense traffic situations can lead to accidents	Stability time < 1s at 50km/h [QUANTIT.]	н	Not Fulfille d	TECN	EXP2	TECN Twizy / Carla				To measure correctly this requirement the Joining maneuvre must be performed with a constant speed
WP4_TEC N_REQ14 _v01	DM	Safe braking in platooning	Once detected an obstacle (e.g. Pedestrian) the vehicle should be able to stop smoothly	Braking should be safe for both, the obstacle and the driver	Stop at least a distance of 0.5m. With a max deceleration of 0.6g [QUANTIT.]	н	Not Fulfille d	TECN	EXP2	TECN Twizy / Carla	Good perception performance			In this use case the pedestrian should be waiting to cross the street so it can be detected by the perception system soon enough
WP4_TEC N_REQ15 _v01	DM	Fail-safe motion planning	The fail-safe motion planning must provide guidance until a safe state is reached	The vehicle cannot be stopped inmediately in case of localization failure. Instead, it must remain operating in degraded mode until a safe state is reached	[QUALIT.]	Н	Not Fulfille d	TECN		TECN Twizy / Carla				
WP4_TEC N_REQ16 _v01	DM	Safe braking	Once detected an obstacle (e.g. Pedestrian) the vehicle should be able to stop timely	Braking should be safe for both, the obstacle and the driver	Stop at least a distance of 0.5m. With a max deceleration of 0.8 g [QUANTIT.]	3005	Not Fulfille d	TECN	EXP2 EXP4 EXP5	TECN Twizy / Carla				
WP5_TEC N_REQ17 _v01		Vehicle communication s	Vehicle communication must have reasonably low latency between vehicles	essential for platoon coordination	Latency below 100ms. [QUANTIT.]	Н	Not Fulfille d	TECN	EXP2	TECN Twizy / Carla				
WP3_TEC N_REQ18 _v01	GEN	Digital maps	drivable space.	Provide road limits, parking spots, drivable space, road direction, etc	Check on trial. [QUALIT.]	Н	Not Fulfille d	TECN	EXP2 EXP4 EXP5	TECN Twizy / Carla				
WP5_APT IV_REQ00 1 1	OPE	ODD - Driveable area	The system shall function in highways	Driving area and traffic situation for the system	NA	н		APTIV	EXP6	APTIV demo vehicle	NA			

	1	2	3	4	5	6	7	8	9	10	11	12	13 14	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	-		Experiments		Dependencies Confli		
65	WP5 APT		ODD -	The system shall react to	Avoid collision with		н	otatus	APTIV	EXP6	APTIV demo	APTIV REQ008		
	IV REQ00		Temporary	small objects in the ego	debris or other small				/	E/4 0	vehicle	1		
	2 1		objects	lane to avoid a collision,	objects in the ego						Verneie	APTIV REQ009		
	² _1		objects									AF IIV_REQ003		
				reduce severity of collision	lane									
				or drive over them safely								APTIV_REQ010		
				when adjacent lanes are								_1,		
				not available for driving								APTIV_REQ014		
												_1,		
												APTIV_REQ015		
												_1,		
												APTIV_REQ016		
												_1,		
												APTIV_REQ017		
											p	1		
66	WP5_APT		ODD - Traffic	The system shall take into	Avoid rear collision	NA	м		APTIV	EXP6	APTIV demo	APTIV_REQ015		
	IV_REQ00			account vehicles in its rear						<	vehicle	_1		
	3_1			while decelerating							\sim			
										0,				
67	WP5_APT			The system shall function	Specifying weather	APTIV_REQ008_1,APTIV	н		APTIV	EXP6	APTIV demo	NA		
	IV_REQ00		conditions	in the presence of rain and	conditions	_REQ009_1 shall be				. ~	vehicle			
	4 1			fog		satisfied				1				
68	WP5_APT	OPE	ODD - Weather	The system shall function	Specifying weather	APTIV_REQ008_1,APTIV	м		APTIV	EXP6	APTIV demo	NA		
	IV_REQ00		conditions	in the presence of snow	conditions	_REQ009_1 shall be			λ^{\vee}		vehicle			
	51					satisfied		10	C.					
69	WP5_APT		ODD -	The system shall function	Specifying lighting	APTIV_REQ008_1,APTIV	м	1	APTIV	EXP6	APTIV demo	NA		
	IV_REQ00		Illumination	at day and night	conditions	_REQ009_1 shall be		~			vehicle			
	6_1					satisfied	2	C						
70	WP5_APT		ODD - Ego	The system shall be	Specifying ego	APTIV_REQ008_1,APTIV	M		APTIV	EXP6	APTIV demo	NA		
	IV_REQ00		Vehicle	enabled in a speed range of	vehicle speed	_REQ009_1 shall be	\sim				vehicle			
	7_1			30 to 130 km/h		satisfied	X							
71	WP3_APT	PER	Small object	The system shall be	Specifying the	1. Number of false	67° °		APTIV	EXP6	APTIV demo	APTIV_REQ002		
	IV_REQ00		detection	capable of detecting small	minimum size of	positives or negatives 2.					vehicle	_1		
	8_1			objects ahead of the	object that requires	TTC to object at the								
				vehicle with a minimum	a reaction from the	time of low and high-								
				dimension of 10cm (h) x	system	confidence detections								
				10cm (w) in the ego lane at		3. Accuracy of position								
				a minimum range required		and dimensions 4.								
				for a safe reaction		Processing delay for								
				(depending on the speed)		detecting the object								
				(depending on the speed)		deteeting the object								
					lang .									
72	WP3_APT	PER	Object	The system shall classify	Necessary input for	1. Number of false	н		APTIV	EXP6	APTIV demo	APTIV_REQ002		
	IV_REQ00		classification	the detected object as	decision making on	classifications 2. TTC to					vehicle	_1,		
	91			overdriveable or non-	braking behaviour	object at the time of						APTIV REQ008		
	-			overdrivable		classification 3.						1		
						Processing delay for						-		
						classification								

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	Status	Owner		Implementation				Comments / Notes
73	WP3_APT IV_REQ01 0_1	PER	Object classification	The system shall consider an object as overdriveable if it can be driven over without: 1) destabilizing the vehicle 2) causing any form of damage to the vehicle or 3) causing any form of injury to the driver or passengers	Definition of an overdriveable object	NA	Η		APTIV	EXP6	APTIV demo vehicle	APTIV_REQ002 _1			
74	WP3_APT IV_REQ01 1_1	OPE	ODD detection	The system shall detect if it is outside its ODD	Required for safe behaviour outside of ODD	Percentage of mis- classifications, Time taken to detect outside ODD conditions	M		APTIV	EXP6	APTIV demo vehicle	APTIV_REQ001 _1, APTIV_REQ002 _1, APTIV_REQ003 _1, APTIV_REQ004 _1, APTIV_REQ005 _1, APTIV_REQ006 _1, APTIV_REQ007			
75	WP4_APT IV_REQ01 2_1	DM	ODD detection	The system shall be outside ODD if an object is detected but not classified when collision is imminent: Time to collision (TTC) < 3,1 sec	enabling/disabling	NA	M DOP	018	APTIV	EXP6	APTIV demo vehicle	APTIV_REQ008 _1, APTIV_REQ009 _1, APTIV_REQ011 1			
76	WP4_APT IV_REQ01 3_1	DM	Outside ODD behaviour	The system shall issue a take over request if it detects outside ODD condition	The system considers driver as a fallback	NA (III)	M		APTIV	EXP6	APTIV demo vehicle	APTIV_REQ011 _1, APTIV_REQ012 1			
77	WP4_APT IV_REQ01 4_1	· ·	Outside ODD behaviour	The system shall have a steady braking and stop in the ego lane when there is no response to the take over request	System behaviour outside ODD and no response to take over request	officit	L		APTIV	EXP6	APTIV demo vehicle	APTIV_REQ002 _1, APTIV_REQ013 _1			
78	WP4_APT IV_REQ01 5_1		Initial behaviour	The system shall decelerate with a maximum absolute deceleration of 3m/s2 when an object is detected in the ego lane and TTC <= 6,1 sec and TTC > 3,1 sec	To avoid high levels of unintended braking	NA	н		APTIV	EXP6	APTIV demo vehicle	APTIV_REQ002 _1, APTIV_REQ008 _1, APTIV_REQ009 _1			
79	WP4_APT IV_REQ01 6_1		Behaviour for Overdriveable object	The system shall adapt its speed to safely drive over an overdriveable object such that the motion profile of the vehicle stays within comfortable limits for the passengers	object is	Motion profile of the object while driving over the object	н		APTIV	EXP6	APTIV demo vehicle	APTIV_REQ002 _1, APTIV_REQ008 _1, APTIV_REQ009 _1			

		2					7		9	10		12	10	8	
	1		-	· · ·	-			8	-	10			-		
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	Status			Implementation	Dependencies	Conflicts	Review	Comments / Notes
80	WP4_APT		Behaviour for	The system shall		1. Maximum	н		APTIV	EXP6	APTIV demo	APTIV_REQ002			
	IV_REQ01	ACT	non-	decelerate with a	collision	deceleration required					vehicle	_1,			
	7_1		overdriveable	maximum absolute	avoidance/mitigatio	to come to a full stop.						APTIV_REQ008			
			object	deceleration of 7m/s2 to	n	2. Distance to obstacle						_1,			
				avoid a collision with a non-		after stop 3. Relative						APTIV_REQ009			
				overdriveable object when		velocity with the object						_1			
				TTC is <= 3,1sec		in case of collision									
81	WP5_S4_	OPE	ODD - zone	The system shall operate	Operational setting	N/A	н		S4	EXP8	S4 Demo vehicle	NA	NA	NA	
	REQ001_			on minor roads	of system										
	V1														
82	WP5_S4_	OPE	ODD - subject	The system shall operate at	Operational setting	N/A	н		S4	EXP8	S4 Demo vehicle	NA	NA	NA	
	REQ002_		vehicle	speeds 032km /h	of system										
	V1										10				
83	WP5_S4_	OPE	ODD - weather	The system shall operate in	Weather capabilities	Other requirements can	М		S4	EXP8	S4 Demo vehicle	NA	NA	NA	
	REQ003_		conditions	light rain		be satisfied this				<	\sim				
	V1					condition present					\sim				
84	WP5_S4_	OPE	ODD - weather	The system shall operate in	Weather capabilities	Other requirements can	м		S4	EXP8	S4 Demo vehicle	NA	NA	NA	
	REQ004_		conditions	light snowing		be satisfied this				~~~					
	V1					condition present				1					
85	WP5_S4_	OPE	ODD - road	The system shall operate in	Weather capabilities	Other requirements can	М		S4 💊	EXP8	S4 Demo vehicle	NA	NA	NA	
	REQ005_		surface	presense of snow or ice on		be satisfied this			\sim	3					
	V1		conditions	the road surface		condition present			$\Sigma $						
									O.						
86	WP3_S4_	PER	Sensor Visibility	The system shall provide	linformation about	Visibility estimate in	н	.<	S 4	EXP8	S4 Demo vehicle	NA	NA	NA	T3.2
	REQ006_		estimation	estimate of LIDAR sensor	visibility is needed	meters. Verified against		~							
	V1			effective visibility	to adap the system	ground truth value.	3	0							
				-	behavior (such as		\sim	-							
					speed) to a safe		\sim								
					level		N								
87	WP3_S4_	PER	Sensor Visibility	The system shall adapt its	If visibility decreases	The adaptation enables	Θ^{-1}		S4	EXP8	S4 Demo vehicle	NA	NA	NA	T3.2
	REQ007_		adaptation	behavior based on changes	system must reduce	system to detect and									
	V1			in sensor visibility	speed in order to be	react to objects in time.									
					able to react in	Test scenario									
					time.	verification.									
						412									
88	WP3_S4_	PER	Sensor	The system shall provide	Undetected and	the percentage of data	н		S4	EXP8	S4 Demo vehicle	NA	NA	NA	T3.5
	REQ008_		Obstruction	estimate of amount of	mitigated partial 💊	points affected by									
	V1 –		estimation	sensor obstruction	sensor obstruction	obstructions. Angles									
1					by snow or dirt can	affected over decided									
					All the second s	treshold such as 50%									
						obstruction (from top									
1					reduce safety. It	view of the vehicle) e.g.									
						3437deg. Compared to									
						ground truth values.									
					in low feature	b. Sana tratil values.									
1					environment.										
1					environnent.										
1															
89	WP3_S4_	DEB	Sensor	The system shall adapt its	-	The system reaches	н		S4	EXP8	S4 Demo vehicle	NA	NA	NA	T3.5
69	REQ009		Obstruction	behavior based on changes		safe state if obstruction	[''		J.+	LAFO	J- Demo venicie				13.5
	REQ009_ V1			0											
	VI VI		adaptation	in sensor obstruction		causes risk for									
		l				operation.		L	I				1	L	I

Image: Non-structureImage: Non-structure		12 13 Dependencies Conflicts NA NA	
90 WP3_S4_ REQ010_ V1 PER Nonitor ing Localization Localization Sensing Monitor module shall provide estimate of reliability of localization sensor data, based on measured visibility treshold parameter, Lidar effective visibility estimate and Monitor purpose is communicate positioning degradation level so real-time. This measure ground truth data or operate safely. M S4 EXP8			
REQ010_ V1 Sensing V1 Monitor module shall monitoring communicate provide estimate of reliability of localization sensor data, based on measured visibility treshold parameter, Lidar effective visibility estimate and communicate positioning the LIDAR-based localization reliability in real-time. This measure is compared against modules may adapt			
V1 Monitoring provide estimate of reliability of localization sensor data, based on parameter, Lidar effective visibility estimate and positioning positioning degradation level so that control localization reliability in real-time. This measure is compared against modules may adapt operate safely.			
reliability of localization sensor data, based on measured visibility treshold parameter, Lidar effective visibility estimate and operate safely.			
sensor data, based on measured visibility treshold parameter, Lidar effective visibility estimate and operate safely.			
measured visibility treshold modules may adapt ground truth data or parameter, Lidar effective vehicle behavior to other reliable visibility estimate and operate safely. localization methods.			
parameter, Lidar effective vehicle behavior to other reliable visibility estimate and operate safely. localization methods.			
visibility estimate and operate safely. localization methods.			
sensor obstruction			
91 WP4_S4_ DM Plan plan System shall plan a safe ADS should not stop Planned paths are H S4 EXP8	P8 S4 Demo vehicle	NA NA	NA T4.1
REQ011_ around block path around static obstacle operation because within the allowed			
V1 its preplanned path driving area and have			
is blocked by e.g. no collision to static	6		
parked vehicle or objects			
road work.	\sim		
92 WP4_54_OPE Path plan dynamically planned path All trajectories Visual representation of M S4 EXP8	P8 S4 Demo vehicle	NA NA	NA T4.1
REQ012_ verification around obstacle should be should be verified the planned trajectory			
V1 verifiable by remote before execution. represents correctly the	~		
operator before execution path			
93 WP4_S4_ DM Out of ODD The system shall detect out Unexpected Percentage of H S4 EXP8	P8 S4 Demo vehicle	NA NA	NA T4.2
REQ013_ of ODD and situations that situations or non- erroneous			
V1 require remote operator standard road classifications. Delay to			
assistance and notify the conditions that may detect outside ODD			
operator. require human conditions			
intervention and			
make appropriate			
decisions to ensure			
the safety of the			
vehicle and other			
road users.			
94 WP4_S4_ DM Fail safe The system shall apply Safety requirements Delay from detection to H S4 EXP8	P8 S4 Demo vehicle	NA NA	NA T4.3
REQ014_ operation minimum risk control start minimum risk			
V1 strategy in case of system maneuver. Time to			
malfunction or unexpected reach minimum risk			
situations that cannot be state.			
handled by the system.			
95 WP3_HIT PER Object Detect and Track objects Accurate class label Detect object up to H NA HIT EXP4		NA NA	NA
_REQ1_v0 detection and with correct class labels and ID assigned to 50m, processing time EXP5	P5 Vehicle		
1 tracking assigned to tracked objects tracked object <50ms, accuracy 0.95			
important for safe planning			
96 WP3_HIT PER Object Detect and Track road The 3D position of Track objects up to H NA HIT EXP4	P4 HIT/CRF/TECH	NA NA	NA
_REQ2_v0 detection and vehicles such as cars, vehicles should be 50m, processing time EXP5			
1 tracking - trucks, vans and bicycles. displayed to enable <30ms, accurate vehicle	5 Venicie		
Vehicles safe path planning state estimation			

	1	2	3		5	C	-	8	9	10	11	12	12	14	15
	ID I		-	•	-			-	-	10					
		Cat.	Name	Description	Rationale	Metrics	Relevance				Implementation				Comments / Notes
	WP3_HIT _REQ3_v0 1		Object detection and tracking - Pedestrians	Detect and Track pedestrians	Accurate class label and ID assigned to tracked object important for safe planning	Detect pedestrians up to 50m, processing time <50ms, accuracy 0.95	н	NA	HIT	EXP4 EXP5	HIT/CRF/TECH Vehicle	NA	NA	NA	
	WP3_HIT _REQ4_v0 1	PER	Object detection and tracking - Road Works	Track road work cones + signs.	The 3D position of cones should be displayed to enable safe path planning	Track objects up to 50m, processing time <30ms, accurate vehicle state estimation	M	NA	HIT	EXP4	HIT/CRF/TECH Vehicle	NA	NA	NA	
	WP3_HIT _REQ5_v0 1	PER	Drivable Road Detection	Provide 2D/3D information related to drivable road. Determine regions in 2D/3D space that correspond to drivable road.	Detecting drivable surface enables vehicle to safely plan path	pixel accuracy measure for both 2D and 3D	Н	NA	HIT	EXP4 EXP5	HIT/CRF/TECH Vehicle	NA	NA	NA	
	WP3_HIT _REQ6_v0 1	PER	Detect Lane Marking Information	Road lines detecting from 2D data	Important for safe planning and maintaining vehicle lane wise control	2D pixel accuracy measure	Н	NA	hit V	EXP4 EXP5	HIT/CRF/TECH Vehicle	NA	NA	NA	
	WP3_HIT _REQ7_v0 1	PER	Vehicle Localisation - GNSS	Accurately localise vehicle position using GNSS measurements	Accurate localisation important for HD Map information extraction	root mean square error (RMSE)< 0.5m	H	NA O'V		EXP4 EXP5	HIT/CRF/TECH Vehicle	NA	NA	NA	
-	WP3_HIT _REQ8_v0 1		Vehicle Localisation - LiDAR	Accurately localise vehicle position using LiDAR data and in case GNSS fails.	important for HD Map information extraction. GNSS may fail in GNSS denied regions. To this end, it is important to have back up localisation system.	root mean square error (RMSE) < 0.5m	22	NA	HIT	EXP4	HIT/CRF/TECH Vehicle	NA	NA	NA	
	WP3_HIT _REQ9_v0 1	PER	Object trajectory prediction	Predict tracked object tracjectories, of vehicles (cars, trucks, vans, etc) and pedestrians.	Important for enabling AV to anticiapte and adjust motion plan to other road users.	Accurate non-ego trajectory prediction up to 2-3seconds from current time, for all traffic participants less 50m from ego.	H	NA	HIT	EXP4 EXP5	HIT/CRF/TECH Vehicle	NA	NA	NA	
	WP3_HIT _REQ10_v 01		Drivable Road Extraction (HD- MAP)	Provide 2D/3D information related to drivable road. Determine regions in 2D/3D space that correspond to drivable road.	Using Pose and HD- MAP to extract drivable surface enables vehicle to safely plan path	Performance dependant on global pose accuracy	Н	NA	HIT	EXP4 EXP5	HIT/CRF/TECH Vehicle	NA	NA	NA	

	1	1 2	3	4	5	6	7	8	9	1	.0 11	12	13	14	15
	ID	2 Cat.	Name 3		Rationale	Metrics		-	-		II Implementation				
4.05				Description						•					Comments / Notes
105	WP3_HIT _REQ11_v 01	OPE??	Extract Lane Marking Information (HD-MAP)	Road lines detecting from 2D data	Using Pose and HD- MAP for extracting rad lines. Important for safe planning and maintaining vehicle lane wise	Performance dependant on global pose accuracy	Н	NA	ніт	EXP4 EXP5	HIT/CRF/TECH Vehicle	NA	NA	NA	
106	WP3_W MG_REQ 01_v01	OPE	Speed range	The self-assessment of perception including speed limit signs shall operate at speeds 10 - 40 km/h	A series of speed limit signs with decreasing speed values indicate that the EGO vehicle approaches roadworks.	N/A	н		WMG	EXP4	WMG Demo vehicle	N/A	N/A	N/A	T3.5
107	WP3_W MG_REQ 02_v01	OPE	Weather and lighting conditions	The self assessment of perception including speed limit signs shall operate at good weather and lighting conditions.	See above	N/A	Η		WMG	EXP4	WMG Demo vehicle	N/A	N/A	N/A	T3.5
108	WP3_W MG_REQ 03_v01	PER	assessment for speed limit	The system shall issue a warning when the detection of speed limit signs fail.	detected due to their small size even	detection of traffic signs fails, the system must issue a warning within a distance of 30 m from the traffic sign and with probability larger than x%.		078	WMG	EXP4	WMG Demo vehicle	N/A	N/A	N/A	T3.5
109	WP3_W MG_REQ 04_v01	OPE	Speed range	The integrity monitoring mechanism of the distance estimation to the front vehicle shall operate at speeds 60 - 100 km/h along a motorway.	Under adverse weather or lighting conditions, the camera- or lidar- based relative localisation to the front vehicle along a motorway can degrade.	0	H		WMG	EXP7	WMG Demo vehicle	N/A	N/A	N/A	T3.5
110	WP3_W MG_REQ 05_v01	OPE	Weather conditions	The integrity monitoring mechanism of the distance estimation to the front vehicle shall operate under adverse weather or lighting conditions along a motorway.	See above	N/A	H		WMG	EXP7	WMG Demo vehicle	N/A	N/A	N/A	T3.5

	1	2	3	4	5	6	j7	8	9	10	11	12	13	14	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	Status	Owner	Experiments	Implementation	Dependencies	Conflicts	Review	Comments / Notes
	WP3_W MG_REQ 06_v01	PER	Integrity monitoring of the distance estimation to the leading vehicle in motorway chauffeur	The system shall issue a warning when the distance estimation to the leading vehicle in motorway chauffeur fails.	See above	Given that the error in distance estimation to the front vhicle in motorway chauffeur exceeds x% of the actual distance, the system shall issue a warning with probability larger than y%.	н		WMG	EXP7	WMG Demo vehicle	N/A	N/A	N/A	T3.5
	MG_REQ 07_v01	OPE	Speed range	localisation for urban chauffeur shall operate at speeds up to 40 km/h	In urban chauffeur GNSS-based localisation can fail, e.g., due to multipath propagation, hence, an integrity monitoring mechanism is needed to mitigate the risks	N/A	Н		WMG	EXP7		N/A	N/A	N/A	T3.5
113	WP3_W MG_REQ 08_v01	PER	Integrity monitoring of GNSS-based localisation in urban chauffeur	The system shall issue a warning when the GNSS- based localisation fails.	See above	Given that the GNSS- based localisation error in urban chauffeur exceeds x meters, the system shall issue a warning with probabliity larger than v%	- 00	010	WMG	EXP7	WMG Demo vehicle	N/A	N/A	N/A	T3.5
114	WP3_ICC S_REQ01 _v01	PER	V2X messages reception from multiple observers in the vicinity of the ego-vehicle	The system must be able to receive V2X messages	The vehicle's decision making cannot ensure safety without receiving V2X information	Reception of V2X messages [QUALIT.]	67 ~	NA	ICCS	EXP2	Carla simulator	NA	NA	NA	Focus is on other vehciles' status and object-level percpetion data (similar to informaiton contained in ETSI CAM/CPM). Carla does not support simulated V2X messaging per se. Proper assumptions and implementation should ensure the soundness of the simulation. Task T3.4
115	WP3_ICC S_REQ02 _v01	PER	V2X data from multiple sources processing, fusion and integration	The system must be able to process and integrate the received V2X information	The vehicle's decision making cannot ensure safety without the processing and integration of V2X information	Processing/integration of V2X information [QUALIT.]	H	NA	ICCS	EXP2	External module integrated with CARLA or Carla simulator	WP3_ICCS_RE Q01_v01	NA	NA	Focus is on other vehciles' status and object-level percpetion data (similar to informaiton contained in ETSI CAM/CPM). Carla does not support simulated V2X messaging per se. Proper assumptions and implementation should ensure the soundness of the simulation. The proposed module can be implemented outside CARLA and bridged with CARLA via ROS bridge or other solution. Task T3.4.

	1	2	3	4	5	6	1 7	/ 8	g	10	11	12	13	14	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	·		-		Dependencies	-		Comments / Notes
	WP3_ICC S_REQ03 _v01	PER	V2X data latency	The system must be able to receive, process and integrate V2X information in a timely manner	The vehicle's decision making cannot ensure safety without low latency.	Receive, process and integrate V2X information in cycles equal or less than 100ms [QUANTIT.]	н	NA	ICCS	EXP2	Carla simulator	WP3_ICCS_RE Q01_v01 & WP3_ICCS_RE Q02_v01	NA	NA	Carla does not support simulated V2X messaging per se. Proper assumptions and implementation should ensure the soundness of the simulation. Task T3.5
117	WP3_ICC S_REQ04 _v01	PER	V2X fused data reliability	The system must be able to trust information fused from V2X from independendt sources	The vehicle's decision making cannot ensure safety with unreliable information	Reliability of 85% or higher [QUANTIT.]	Н	NA	ICCS	EXP2	External module integrated with CARLA or Carla simulator	WP3_ICCS_RE Q01_v01 & WP3_ICCS_RE Q02_v01	NA	NA	Carla does not support simulated V2X messaging per se. Proper assumptions and implementation should ensure the soundness of the simulation. Task T3.5
118	WP4_ICC S_REQ05 _v01	PER	Behavior prediction of other vehicles accuracy	The system must be able to predict the behavior of other vehicles by classifying maneuvers into prefefined classes (e.g. lane change to the right, lane change to the left, cut-in from the left), with certain minimum accuracy	DM cannot ensure safety with low accuracy	Accuracy of 95% or higher [QUANTIT.]	н	NA	ICCS	EXP7	Carla simulator	NA	NA	NA	An investigation regarding the feasibility of accurate deterministic trajectory predictions is ongoing. Task T4.2
	WP4_ICC S_REQ06 _v01	PER	Behavior prediction of other vehicles reliability	The system must be able to predict the behavior of other vehicles, by classifying maneuvers into prefefined classes (e.g. lane change to the right, lane change to the left, cut-in from the left), with a certain probabilistic certainty.	safety based on predictions with low probabilistic	Probabilistic certainty of 80% or higher [QUANTIT.]	- 200	NA	ICCS	EXP7	Carla simulator	NA	NA	NA	A probabilistic prediction should be considered reliable only if the corresponding probability is very high (indicating a probable event) or very low (indicating an improbable event). Task T4.2
	WP4_ICC S_REQ07 _v01	PER	Behaviour prediction of other vehicles robust under object-level uncertainty due to bad weather conditions	The system must be able to maintain prediction accuracy and reliability under challenging weather conditions	robust under	Drop of accuracy and reliability under challenging weather conditions not higher than 5%	H	NA	ICCS	EXP7	External module integrated with CARLA or Carla simulator	WP4_ICCS_RE Q09_v01	NA	NA	Since the perception layer is abstracted the input for the experiment, i.e. tracked objects' trajectories, should be artificially tweaked in order to mimic bad weather effects.
	WP4_ICC S_REQ08 _v01	GEN	Behavior prediction of other vehicles: input scenarios	The simulation environment must provide scenario data involving tracked objects trajectories as inputs for the SuT	independently,	NA	н	NA	ICCS	EXP7	External module integrated with CARLA or Carla simulator	NA	NA	NA	TBD Other vehicles' behaviour data generated in simulation
	WP4_ICC S_REQ09 _v01	OPE	Behavior prediction of other vehicles: challenging OD	The simulation environment must provide scenario data involving challenging weather conditions like rain or fog	Robustness of the algorithm under adverse weather is a basic objective of the module in this experiment	NA	Н	NA	ICCS	EXP7	External module integrated with CARLA or Carla simulator	NA	NA	NA	CARLA provides specific configurations for bad weather.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	Status	Owner		Implementation				Comments / Notes
123	WP5_TUD	OPE	ODD - Traffic	The system shall function	Driving area and		н	0	TUD	EXP1	TUD demo vehicle	•			· · ·
	_REQ001			in the urban environment	traffic situation for										
	_1				the system										
124	WP5_TUD	OPE			Specifying weather		м	0	TUD	EXP1	TUD demo vehicle				
	_REQ002		conditions	in the presence of light rain	conditions										
	_1			and fog											
125	WP5_TUD	OPE		1 '	Specifying weather		м	0	TUD	EXP1	TUD demo vehicle				
	_REQ003		conditions	in the presence of light	conditions										
126	1 WP5_TUD	ODE	ODD -	snowfall The system shall function	Specifying lighting		н	0	TUD	EXP1	TUD demo vehicle				
120	REQ004	OPE		at day and night	conditions		п	0	100	EAPI	TOD defilo venicie				
	1			at day and hight	conditions										
127	WP5_TUD	OPE	ODD - Ego	The system shall be	Specifying ego		н	0	TUD	EXP1	TUD demo vehicle				
	REQ005		Vehicle	enabled in a speed range of											
	1			5 to 30 km/h							. ()				
128	WP3_TUD	PER	Obstacle	The system shall be	Necessary input for	Obstacles are defined	н	0	TUD	EXP1 🧹	TUD demo vehicle				
	_REQ006		localization	capable of detecting /		as objects that have a					\sim				
	_1			localizing obstacles on the		width >= 20 cm and a				~ 0					
				road ahead of the vehicle.	area and for	height >= 20 cm above				1/4					
					avoiding collisions.	the road surface.				~~					
						Lateral localization			-	1					
						tolerance < 4°or 0.3m,			\sim) ÷					
						whichever larger			0.						
						(corresponds to ± 1.4 m		.0	\sim						
						at 20 m, center). Longitudinal tolerance <		2	/						
						4% of distance or 0.3m,	1	0							
						whichever larger	\sim	-							
						(corresponds to ± 0.8	\sim								
						m at 20 m, center).	\sim								
						With these tolerances,	0.1								
						at least 90%, 95%, 99%									
						and 99,9% of the									
						obstacles are to be									
						correctly detected									
						within 20-40m, 10-20m,									
						5-10m and 1-5m									
					X	distance ranges,									
						respectively, within the									
					leg.	driving corridor, within									
		•			1					•				· · · · · · ·	

	1	2	3	4	5	6	5 7	8	9	10	11	12	13	14	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	Status	Owner	Experiments		Dependencies	Conflicts	Review	Comments / Notes
	WP3_TUD _REQ007 _1	PER	Obstacle velocity estimation	The system shall be capable of estimating velocities of moving obstacles on the road ahead of the vehicle.	Necessary input for decision making for obtaining driveable area and for avoiding collisions.	Obstacles are defined as objects that have a width >= 20 cm and a height >= 20 cm above the road surface. Lateral velocity tolerance < 4°/s or 0.4 m/s if latter larger (corresponds to ± 1.4 m/s at 20 m, center). Longitudinal velocity tolerance < 8% or 0.6 m/s if latter larger (corresponds to ± 1.6 m/s at 20 m, center). With these tolerances, at least 90%, 95%, 99% and 99,9% of the obstacles are to be correctly determined within 20-40m, 10-20m, 5 10m and 1-5m distance ranges, respectively, within the driving corridor, within a latency of 300 ms.	М	0	TUD	EXP1	TUD demo vehicle	•			
130	WP3_TUD _REQ008 _1	PER	Object classification	The system shall classify obstacles which are pedestrians, riders (e.g. cyclists) and cars as such.	Definition of an important set of road users with relevance for motion prediction and decision making.	Classification accuracy for the pedestrian+riders class combined and for the car class shall each be >95% (i.e. TP+TN / TP+FP+TN+FN) within a latency of 300 ms.	M DO	078	TUD	EXP1	TUD demo vehicle	WP3_TUD_RE Q006_1, WP3_TUD_RE Q007_1,			
131	WP3_TUD _REQ009 _1	PER	Self-localization	The system shall self- localize w.r.t. a global map.	Required for safe behaviour within ODD	Lateral self-localization error max. 0.3 m. Longitudinal localizatior error max 0.5 m. These error bounds are to be achieved in 99% of time.			TUD	EXP1					
132	WP3_TUD _REQ010 _1	OPE	ODD detection	The system shall detect if it is outside its ODD	. ·	Percentage of mis- classifications, Time taken to detect outside ODD conditions	м	0	TUD	EXP1	TUD demo vehicle				
133	WP4_TUD _REQ011 _1		Driving behaviour w.r.t. road border	The ego-vehicle will not drive too closely to the road border	Required for safe behaviour within ODD	The ego-vehicle will not come closer than 0.3m to the road border in 99.9% of time.	н	0	TUD		CARLA simulator, TUD demo vehicle	WP3_TUD_RE Q009_1			

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	15
	ID	Cat.	Name	Description	Rationale	Metrics	Relevance	Status	Owner	Experiments	Implementation	Dependencies	Conflicts	Review	Comments / Notes	
134	WP4_TUD	DM,	Driving	The ego-vehicle will not	Required for safe	The ego-vehicle will not	н	0	TUD	EXP1	CARLA simulator,	WP3_TUD_RE				
	_REQ012	ACT	behaviour w.r.t.	drive too closely to	behaviour within	come closer than 0.75					TUD demo vehicle	Q006_1,				
	_1		obstacles and	obstacles; the minimum	ODD	m to stationary						WP3_TUD_RE				
			VRUs	distance will depend on		obstacles which are not						Q007_1,				
				whether obstacles are		VRUs (pedestrian,						WP3_TUD_RE				
				stationary or dynamic, and		riders). The ego-vehicle						Q008_1,				
				whether classified as VRU		will not come closer										
				(pedestrians, riders) or not.		than 1.5 m and 1.0 m to										
						obstacles that are										
						dynamic or which are										
						VRUs, for ego-speeds of										
						10-30 km/h and 0-10										
						km/h, respectively.										
											C					
135	WP4_TUD	DM,	Driving	The driving style of the ego-	Required for user	Limits on maximum	н	0	TUD	EXP1 🧹	CARLA simulator,	WP4_TUD_RE				
	_REQ013	ACT	behaviour	vehicle will maximize	acceptance	acceleration/decelerati					TUD demo vehicle	Q011_1,				
	_1		overall	comfort and time		on and steering rate.				0,	-	WP4_TUD_RE				
	-			efficiency, while safety is						5		Q012_1				
				strictly maintained						. ~ .						

n and steering race.