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Towards an Advanced Self-Monitoring Tracking Module: Leveraging
Statistical Hypothesis Tests and Subjective Logic Reasoning

Thomas Griebel , Alexander Scheible, Michael Buchholz , and Klaus Dietmayer

Abstract— In automated driving systems, monitoring and
self-assessment of tracking algorithms is essential. This is
especially necessary to meet today’s safety and robustness
challenges in an automated system. We propose a hybrid
approach to develop a self-monitoring module for tracking
algorithms. It makes use of well-known statistical hypothesis
testing techniques. The results of which are fed into a subjective
logic-based reasoning framework to produce robust and reliable
self-assessment scores. Hence, we investigate the potential of
combining these two approaches for monitoring and self-
assessment systems and show the significance of this approach
in experimental results.

I. INTRODUCTION

As automated driving algorithms continue to advance
towards production development, the challenges to safety
and reliability continue to grow. In response, the automotive
industry has pushed for compliance with more stringent func-
tional safety standards such as ISO 21448, which addresses
Safety of the Intended Functionality (SOTIF) [1]. A key
aspect of compliance is the development of Self-Assessment
(SA) modules within automated systems, particularly for
central tasks such as filtering and tracking algorithms.

Currently, existing filtering and tracking algorithms pri-
marily use consistency tests to monitor and self-assess their
algorithms. These consistency tests mostly focus on single
criteria, such as the Normalized Innovation Squared (NIS) [2]
for Kalman filtering in Single-Object Tracking (SOT). While
some extensions of the NIS and other tests for specific
criteria have been proposed, these tests can only be per-
formed separately for specific aspects and are not linked.
Overall, a comprehensive framework for the development of
SA modules is still lacking in the scientific literature.

This work aims to provide a unified SA module and
framework for tracking algorithms. The proposed SA module
applies classical statistical hypothesis testing approaches [3]
for several aspects and assumptions of filter and tracking
algorithms. Leveraging the hypothesis testing results, a Sub-
jective Logic (SL) [4] reasoning framework is built on top
of that to obtain corresponding SA scores. This is first
done for each individual aspect to be tested for the tracking
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Fig. 1. Our proposed self-monitoring tracking module for single-
object tracking in clutter consists of several statistical hypothesis tests for
corresponding tracking assumptions, which are then used to build up a
subjective logic-based reasoning framework for self-assessment. This results
in combined self-assessment scores for each sensor and for the overall
tracking system.

assumption. Then, the individual SA scores are additionally
combined and fused in an SL manner to obtain overall SA
scores for each sensor and then for the overall tracking
algorithm.

In this work, we focus on tracking single objects in
clutter, which means that challenges like clutter detections,
missed detections, and unknown data associations exist in
addition to the classical filtering challenges such as noisy
measurements, among others [5]. To build the SA reasoning
framework and to be able to unify all the hypothesis test
results, SL theory is used, which is a modern extension
of probabilistic logic for reasoning under uncertainty. The
general concept of the developed SA module is visualized
in Fig. 1. With the development of this SA module using
statistical hypothesis testing, we are advancing our previous
efforts [6]–[9], aiming to contribute to the establishment
of a unified and comprehensive SA framework for tracking
algorithms.

Summarizing our work in this paper, we propose:

• A unified approach for an SA module for SOT in
clutter combining statistical hypothesis testing and SL
reasoning framework in Section IV,

• An SA approach that monitors individual and spe-
cific tracking aspects and, additionally, overall sensor-
specific and general tracking SA scores in Section IV,

• A comprehensive evaluation of the SA module in chal-
lenging real-world motivated simulation scenarios in
Section V.
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II. RELATED WORK

Classical consistency assessments within Kalman filter-
ing, such as the NIS and the Normalized Estimation Error
Squared (NEES), were first introduced by Bar-Shalom et
al. [2]. While NEES necessitates access to Ground Truth
(GT) data, which is typically unavailable during online
applications, the NIS serves as a feasible solution for on-
line assessment. Mahler [10] extended the NIS approach
to encompass multi-object scenarios, introducing the Multi-
Target NIS (MNIS) and the Multi-Object Generalized NIS
(MGNIS), providing divergence detection capabilities with-
out relying on GT data. Reuter et al. [11] further refined
this approach for the δ-Generalized Labeled Multi-Bernoulli
(GLMB) filter, devising target-dependent (MGNIST ) and
clutter-dependent (MGNISC) variants. To mitigate the clutter
dependency of MGNIST , they proposed the Approximate
Multi-Target NIS (AMNIS), aligning its characteristics with
the single-target NIS. Additionally, Stübler et al. [12] pro-
posed consistency assessments derived from NIS for feature-
based random-set Monte Carlo localization, scrutinizing var-
ious components of the measurement model for consistency.
Recently, Dunı́k et al. [13] proposed a methodology for
assessing tracking reliability by introducing the concept of
a reliability index. This index is formulated based on the
notion of an ideal Bayesian filter, which offers a GT tracking
outcome devoid of any assumptions, approximations, or
modeling inaccuracies. Consequently, although theoretically
feasible, this index remains unavailable for online estimation.
Nonetheless, the field of monitoring and SA of tracking
systems remains underexplored, leaving numerous research
inquiries unanswered.

On the other hand, more research has been done on clas-
sical evaluation measures of Multi-Object Tracking (MOT)
systems, for which GT data is required. Some classical MOT
evaluation metrics are the optimal subpattern assignment
(OSPA) [14] and the generalized OSPA (GOSPA) [15].
Both optimally handle the assignment problem by a pa-
rameter c that balances localization and cardinality errors,
even considering different cardinalities of multiple object
states. In addition, the GOSPA can be divided into three
different errors: Localization, missed tracks, and false tracks
errors. Using the Hellinger distance, the approach in [16]
allows for incorporating track uncertainty into the OSPA
metric. To account for errors between the estimated and
true set of tracks, the authors of [17] propose the OSPA-on-
OSPA (OSPA2) extension of the OSPA. Again, all evaluation
techniques require GT data, making them impractical in real-
world online applications.

In our previous research, we introduced an SA module for
SOT in clutter, incorporating SL theory [7]. This module in-
cludes a self-assessing Kalman filter, using SL to characterize
statistical uncertainty [6]. Additionally, we expanded this SA
framework to encompass linear and nonlinear multi-sensor
Kalman filters, enabling the assessment of both individual
sensor SAs and overall system performance [8]. In contrast to
our current work, the SA techniques developed so far aimed

at directly incorporating the SL-based SA approach into the
tracking algorithm. This means that the monitoring of the
tracking assumption was done directly within the framework
of SL theory. The current work, however, aims to leverage
all kinds of classical statistical hypothesis testing and then,
on top of that, build an SL-based reasoning framework to
process and combine the classical testing results.

III. FUNDAMENTALS

This section describes the fundamentals of this work. First,
the SOT in clutter task is presented mainly based on [5].
Then, classical hypothesis testing is outlined based on [3].
Finally, the basics of SL are introduced based on [4].

A. Single-Object Tracking in Clutter

SOT in clutter represents a specific instance of MOT,
where only one object is present and observed in the sur-
roundings. While classical Kalman filtering principles apply,
SOT in clutter introduces new challenges, such as handling
missed detections, clutter detections, and uncertain data as-
sociations alongside noisy measurements and dynamic state
estimation. Notably, the primary adaptations from classical
Kalman filtering lie in the measurement model and the
resulting association, while prediction, update, and object dy-
namics principles remain typically unchanged. Consequently,
our focus centers on the measurement model in the following
to address these challenges and the typically made modeling
and assumptions for that. Typical algorithms tackling this
task are the Nearest Neighbor (NN), the Probabilistic Data
Association (PDA), and the Gaussian sum algorithms. In
this work, we focus on the NN algorithms. However, the
proposed SA methods can also be applied to the other
associations algorithms.

At each time step k ∈ N, we receive from each sensor s ∈
S a set of measurements Z

(s)
k = {z1, . . . ,zmk

}, where zi ∈
Rm for i = 1, . . . ,mk. Here, m ∈ N denotes the dimension
of the measurement space for each individual measurement,
and mk ∈ N0 signifies the count of measurements at a time
step. The general goal of the filter algorithm is to estimate the
object state xk ∈ Rn with the state dimension n ∈ N based
on the incoming measurements over time. Within Kalman
filtering, xk is modeled by an n-dimensional multivariate
Gaussian distribution, characterized by mean x̂k ∈ Rn and
covariance matrix Pk ∈ Rn×n, i.e., xk ∼ N (x̂k,Pk).
The typically made major assumptions in SOT in clutter
algorithm are presented below.

1) Process and Measurement Noise: The noise for the
process and measurement model, vk ∈ Rn and wk ∈ Rm, re-
spectively, are white, uncorrelated, and Gaussian distributed,
i.e., vk ∼ N (0,Qk) with Qk ∈ Rn×n and wk ∼ N (0,Rk)
with Rk ∈ Rm×m.

2) Clutter Detections: Furthermore, clutter detections are
modeled by a false alarm process. Here, the number of
clutter detections mck ∈ N0 is Poisson distributed with an
expected number λ̄c ∈ (0,∞), i.e., mck ∼ Poi(λ̄c). All
clutter detections are statistically independent and identically
distributed with a spatial distribution λc(zk). Typically, it is



assumed that λc(zk) follows a uniform distribution across
the sensor’s field of view (FOV) R with its volume Vol(R).
This means that λc(zk) = U(R) with λc(zk) =

λ̄c

Vol(R) for
zk ∈ R.

3) Missed Detections: The sensors may or may not detect
the object at a given time. If the sensor does not detect the ob-
ject, this is called missed detection. The detection probability
pD(xk) ∈ [0, 1] characterizes the probability of a sensor
detecting an object at time step k. Consequently, 1−pD(xk)
represents the probability of the sensor failing to detect the
object. Thus, the sensor’s object detection process conforms
to a Bernoulli distribution with probability pD(xk), denoted
as Bernoulli (pD(xk)). Note that the detection probability
pD(xk) is typically assumed to be state-independent and
constant such that pD(xk) = pD.

B. Hypothesis Testing

Classical hypothesis testing aims to test sampled data
against a hypothesis [3]. Thus, first, a hypothesis needs to
be formulated based on the questioned goal. The so-called
null hypothesis H0 is, for example, that the sampled data
follows a certain distribution. And the alternative or counter
hypothesis is that it does not follow the distribution. Then,
a significance level α ∈ (0, 1) needs to be specified. This
significance level is the maximum probability that H0 will
be falsely rejected when it is actually true. Typical values for
α are 0.05 or 0.01. Then, all of these are used to compute
the test statistics. This includes the p-value p ∈ [0, 1], which
denotes the probability, given that H0 is true, of observing a
test statistic at least as extreme as the one from the sampled
data. If p ≤ α, H0 is rejected and if p > α, H0 is not
rejected. This leads to a final decision on the hypothesis
testing.

C. Subjective Logic

This section introduces the basics of SL [4], which are
needed for our SA reasoning framework. SL is a framework
for reasoning under uncertainty and it explicitly accounts for
the aspect of statistical uncertainty. The key component of
SL is an opinion that represents information about a discrete
random variable X in the domain X with cardinality |X| ≥ 2.
An SL opinion is defined as

ωX = (bX , uX ,aX), (1)

where bX is the belief mass distribution representing the
belief in each event of X , uX is the uncertainty mass
representing the lack of evidence, and aX is the base rate
distribution representing the prior knowledge about X . To
form an opinion, the following relations need to be fulfilled:

bX : X → [0, 1], 1 = uX +
∑
x∈X

bX(x) , (2a)

aX : X → [0, 1], 1 =
∑
x∈X

aX(x) . (2b)

When the random variable X has two events in its domain
X = {x, x̄}, the opinion is called a binomial opinion. This

is a special case of the general multinomial opinion case for
|X| ≥ 2. For binomial opinions, the belief mass bX can be
separated and explicitly expressed as belief bx = bX(x) and
disbelief dx = bX(x̄), which yields

ωX = (bx, dx, uX ,aX). (3)

Opinions can be mapped to the classical probability space
using the projected probability, i.e.,

PX(x) = bX(x) + aX(x)uX , ∀x ∈ X. (4)

The projected probability PX equals the expected outcome
of the opinion in the probability space using Dirichlet
distributions [4].

One of the advantages of SL is its powerful fusion frame-
work. Here, multiple opinions ωS1

X , . . . , ωSN

X from different
sources S1, . . . SN about the same random variable X ∈ X
can be merged together to form a comprehensive fused
statement in terms of an opinion ωS

X . Within SL, a variety of
fusion operators exist. The choice of which fusion operator
is suitable depends on the considered applications within its
situation and their underlying assumptions. Common fusion
operators are, for example, the cumulative belief fusion
(CBF) and the averaging belief fusion (ABF) [4]. The CBF
operator is denoted as ω

⋄(S)
X and abbreviated as ‘⊕ ‘, and is

given by [4]

ω
⋄(S)
X = ⊕

S∈S

(
ωS
X

)
= ωS1

X ⊕ . . .⊕ ωSN

X . (5)

It is particularly suitable when the information from different
sources, which are merged, is independent of each other.
This also means that more evidence should decrease the
uncertainty in this case. On the other hand, the ABF operator
is denoted as ω

⋄(S)
X and abbreviated as ‘⊕‘ using [4]

ω⋄(S) = ⊕
S∈S

(
ωS
X

)
. (6)

ABF is suitable when the information of sources is not
independent of each other. This means that more information
does not necessarily decrease the uncertainty. For more
information about SL, please refer to [4].

IV. SELF-MONITORING TRACKING MODULE

This section presents the proposed SA module for moni-
toring various assumptions and aspects of the NN tracking
algorithm for the task of SOT in clutter. First, several
statistical hypothesis tests are applied to the assumptions
stated in Section III-A, such as the innovation, bias, clutter
rate, spatial clutter distribution, and detection probability.
Based on these hypothesis tests, an SL opinion for each
result is obtained. These SL opinions can then be fused
to compute a combined SA score. If multiple sensors are
available within the perception system, this SA score can be
computed individually for each sensor. The SA scores for
all sensors can be fused again in order to obtain an overall
tracking SA score. This SA module is visualized in Fig. 1
and outlined in the following.



A. Innovation Test

The innovation test is based on the NIS consistency test for
Kalman filtering, which focuses on testing the assumptions
about the process and the measurement noise described in
Section III-A.1. The NIS is computed by [18]

εγk
= γT

k S
−1
k γk. (7)

Here, γk = zk − ẑk|k−1 is the innovation with the measure-
ment prediction with mean ẑk|k−1 ∈ Rm and its innovation
covariance Sk ∈ Rm×m. Then, if the models are linear and
the assumptions about the process and measurements noise
are met, εγk

is χ2 distributed with m degrees of freedom.
For hypothesis testing, the null hypothesis H0 is defined

as “The innovation γk is consistent with the innovation
covariance Sk”, which also includes the assumptions stated
in Section III-A.1. H0 is accepted if εγk

∈ [r1, r2], with the
acceptance interval [r1, r2] calculated such that the probabil-
ity accepting H0 is 1−α, i.e., P

[
εγk

∈ [r1, r2]|H0

]
= 1−α.

This means the acceptance interval [r1, r2] is calculated using
the inverse cumulative distribution function F−1 of the χ2

distribution, i.e.,

r1 = F−1
(α
2
,m

)
, r2 = F−1

(
1− α

2
,m

)
. (8)

Because the χ2 distribution is asymmetric for small degrees
of freedom, a one-sided hypothesis test is often used here,
which yields a lower bound of r1 = 0.

The results are used to build up the binomial opinion
ωXinno = (bx, dx, uX ,aX) of the random variable Xinno ∈
Xinno = {xH0 , x̄H0}. Here, the event xH0 corresponds to the
acceptance of H0 and x̄H0 to the rejection of H0. Then, at
each time step k, one result of the innovation hypothesis test
is obtained, which results in evidence of either xH0

= 1 or
x̄H0

= 1. Note that the opinion ωXinno is initialized with
the uncertainty uX = 1 to account for the fact that no
evidence has been collected at the beginning, and the base
rates aX(xH0

) = 1− α and aX(x̄H0
) = α using the given

significance level α of the hypothesis test. Then, using the
bijective mapping from SL [4], which maps the collected
evidence to an opinion, ωk

Xinno
is obtained. These opinions

are fused together over a given sliding window of length
ns ∈ N using the CBF operator (5) to accumulate evidence
over time. This yields a sliding window innovation opinion
ωXinno . Note that the time index k and the corresponding
indices for the sliding window consideration are ignored in
the following for reasons of clarity. Calculating the projected
probability of ωXinno with (4), the innovation test SA score
PXinno(xH0) ∈ [0, 1] is obtained. A high score near 1 means
that the innovation test states that the tested assumptions
in terms of H0 are fulfilled, and the SA reports that the
algorithm is working as expected. In contrast, a low score
near 0 means that the assumptions to be tested in terms of
H0 are likely to be not fulfilled, such that the SA reports
assumption violations, which can lead to unreliable tracking
estimates.

B. Bias Test

The bias test is similar to the innovation test. In fact,
the NIS also implicitly tests for a measurement bias. This
means the bias test is a targeted version of the innovation
test towards a bias in the assumptions of Section III-A.1.
Therefore, the normalized mean innovation is calculated as

εµk,j
=

γk,j√
Sk,(j,j)

(9)

for all measurement components j = 1, . . . ,m. Note that
Sk,(j,j) is the scalar component at row j and column j of
the innovation covariance Sk. If the innovation is bias-free,
then εµk,j

∼ N (0, 1) for all j = 1, . . . ,m.
Then, for the hypothesis testing, the null hypothesis H0

states: “The measurements, and thus the innovations, are
bias-free”. H0 is accepted if εµk,j

∈ [−r, r], ∀j, due
to the symmetry of the standard normal distribution. The
acceptance interval [−r, r] is similarly calculated as before
with the significance level α for the standard normal distri-
bution. The hypothesis testing results are used to create the
binomial opinion ωXbias with Xbias ∈ Xbias = {xH0

, x̄H0
}.

Following the same procedure as before, using a sliding
window approach for ωXbias with the CBF operator and ns
time steps, the bias test SA score is obtained by the projected
probability PXbias(xH0

) ∈ [0, 1]. Note that the sliding window
length ns can be chosen differently than before, but for the
sake of simplicity, it is denoted as the same.

C. Clutter Rate Test

The clutter rate test focuses on the fulfillment of the
assumption that the clutter rate follows a Poisson distribution
with an expected number λ̄c, i.e., mck ∼ Poi(λ̄c), from
Section III-A.2. This yields the null hypothesis H0: “The
clutter rate mck is Poisson distributed with expected value
λ̄c”. H0 is accepted if mck ∈ [r1, r2], with the acceptance
interval [r1, r2] of the Poisson distribution computed such
that the probability accepting H0 is 1 − α as before. This
means the acceptance interval [r1, r2] is calculated using the
inverse of the cumulative distribution function (or percent
point function) F−1 of the Poisson distribution similar to (8).
Then, the evidence for the number of clutter measurements
is obtained by

mck =

{
0, for mk = 0,

mk − pD, for mk > 0.
(10)

Using the obtained evidence, the hypothesis testing for H0

is performed to build up the binomial opinion ωXclut-rate with
Xclut-rate ∈ Xclut-rate = {xH0

, x̄H0
}. Again, following the

same procedure as before, using a sliding window approach
for ωXclut-rate with the CBF operator and ns time steps, the
clutter rate test SA score is obtained by the projected
probability PXclut-rate(xH0) ∈ [0, 1].

D. Spatial Clutter Distribution Test

The spatial clutter distribution test monitors the fulfillment
of the assumption that clutter detections are uniformly spa-
tially distributed, i.e., that λc(zk) = U(R), with λc(zk) =



λ̄c

Vol(R) for zk ∈ R from Section III-A.2. This test is
performed using a Kolmogorov–Smirnov Goodness-of-Fit
test [19]. This test compares the underlying distribution
of obtained samples against the assumed distribution. The
null hypothesis H0 is defined as ”The clutter is uniformly
spatially distributed”, as stated above. The samples for this
test are obtained by considering all incoming measurements
Z

(s)
k = {z1, . . . ,zmk

} in sensor coordinates for sensor
s. First, the NN-associated measurement is removed from
the measurement set as it is assumed to be the object-
originated one. Note that the NN-associated measurement is
the measurement selected by the NN association algorithm as
the object-originated measurement, associated with the object
track, and then updated accordingly. Then, the measurements
are scaled and normalized using the sensor FOV to be
mapped on the range [0, 1]. Finally, the scaled measurement
set is input to the Kolmogorov–Smirnov Goodness-of-Fit
test and tested to a uniform distribution on [0, 1]. This test
outputs a p-value p as described in Section III-B. The p-
value p is compared to the chosen significance level α,
and, in this way, evidence is collected for supporting or
rejecting H0. Using this, the binomial opinion ωXclut-spatial with
Xclut-spatial ∈ Xclut-spatial = {xH0 , x̄H0} is created. Following
the same procedure as for the other tests, using the sliding
window approach for ωXclut-spatial with the CBF operator and
ns time steps, the clutter spatial distribution test SA score is
obtained by the projected probability PXclut-spatial(xH0

) ∈ [0, 1].

E. Detection Probability Test

The detection probability test focuses on the monitoring
of the assumption that the sensor’s object detection process
follows a Bernoulli distribution with constant probability pD,
i.e., Bernoulli (pD). Here, a binomial test [19] is performed,
which is an exact test for a binomial distribution. This means
that the evidence of a performed detection (one measurement
is NN-associated at a time step) is accumulated over time
here using a sliding window of ns time steps to perform a
more statistically significant test. Thus, the null hypothesis
H0 is “The detection process over time follows a binomial
distribution with probability pD, i.e., Binomial(ndets, ns, pD)
with the number of NN-associated detections ndets in the time
window ns”, which corresponds to a sequence of Bernoulli
experiments. Then, using ndets, the binomial test can be per-
formed. The test output result of the p-value p is compared
to the chosen significance level α, and, in this way, evidence
is collected for supporting or rejecting H0. Based on this,
a binomial opinion ωXdet with Xdet ∈ Xdet = {xH0

, x̄H0
} is

created. Then, following the same procedure as for the other
tests, the detection probability test SA score is obtained by
the projected probability PXdet(xH0) ∈ [0, 1].

F. Combined Hypotheses Tests for Each Sensor

All these statistical tests can be performed for one sensor
to test all the assumptions’ fulfillment. Using the obtained SL
opinions for each test, a combined SA score can be obtained
by fusing the opinions in the SL reasoning framework. This
is performed by using the CBF operator (5) to accumulate

evidence and to obtain ωXcomb with the random variable Xcomb
combining all events for accepting H0, the union of all
individual events xH0

, and its counter-events for rejecting
H0, the union of all individual events x̄H0

, in the domain
Xcomb = {xH0 , x̄H0}. This yields the combined opinion

ωXcomb = ωXinno ⊕ ωXbias ⊕ ωXclut-rate ⊕ ωXclut-spatial ⊕ ωXdet .
(11)

Then, calculating the projected probability of ωXcomb with (4),
the combined SA score for one sensor PXcomb(xH0) ∈ [0, 1]
is obtained.

G. Overall Tracking Monitoring

When multiple sensors are involved in the tracking system,
the combined SA score can be calculated for each sensor
s ∈ S. This results in combined opinions ω

(s)
Xcomb

for all
sensors. These combined opinions can then be fused in the
SL reasoning framework to obtain one overall SA score
for the whole tracking algorithm. This leads to the opinion
ωXoverall with Xoverall ∈ Xoverall = {xH0 , x̄H0} by using the
ABF operator (6) to average the collected evidence. The ABF
operator is used here to average the combined opinions of
all sensors in order to obtain an overall averaged tracking
SA score. The resulting opinion is calculated by

ωXoverall = ⊕
s∈S

(
ω
(s)
Xcomb

)
. (12)

Again, the overall tracking SA score can be calculated by
projection, yielding PXoverall(xH0

) ∈ [0, 1].

V. EXPERIMENTS

In this section, we evaluate our proposed self-monitoring
module in SOT in clutter using the NN association algorithm.
First, we consider a scenario with multiple disturbances
in different aspects and tracking assumptions. Second, a
scenario is set up to simulate disturbances caused by ad-
verse weather conditions and mirroring effects in an urban
environment.

In our simulations, we analyze a multi-sensor system
comprising three sensors that measure the objects in two
dimensions (x, y) ∈ R2. To evaluate our SA module ap-
proach, we initially assume that the assumptions regarding
all three sensors in the NN tracking algorithm are identical to
the GT-modeled assumptions for the simulation. This initial
assumption allows our SA to affirm that the system operates
as expected. Additionally, we employ the nearly constant
velocity (CV) model [18], resulting in a linear scenario. All
results shown are averaged values from 100 Monte Carlo
runs. For our proposed self-monitoring tracking module, we
choose the significance level α = 0.05 and the time window
length ns = 35 for all hypothesis tests.

A. Disturbance Scenario

First, a scenario with multiple disturbances is considered.
Here, the focus and most of the disturbances are in GT-
modeled assumptions of Sensor 1. The overview of the
consecutively injected disturbances of the scenario is given
in Table I. The arrow pointing up ’↑’ and the arrow pointing



TABLE I
OVERVIEW OF THE DISTURBANCES IN THE FIRST DISTURBANCE SCENARIO.

Sensors
Time steps

100− 200 300− 400 500− 600 700− 800 900− 1000 1100− 1200 1300− 1400

Sensor 1 ↑ meas. noise ↑ clutter rate ∆ spatial clutter dist. ↓ det. prob. + meas. bias
Sensor 2 + meas. bias
Sensor 3 + meas. bias
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Fig. 2. The self-monitoring tracking module results, consisting of five SA tests and the combined SA scores for all three sensors, are shown. Table I
shows the corresponding disturbances of the scenario. Red shadows indicate these disturbances, which are monitored by the SA module.

down ’↓’ mean that the related assumption is violated by
increasing and decreasing the corresponding GT simulated
parameter, respectively. The ’∆’ means that the spatial clutter
distribution is changed from the assumed uniform distribu-
tion to Gaussian. Moreover, the ’+’ means a measurement
bias is added to the measurements. These disturbances are
injected in the given corresponding time interval. Outside of
these disturbance intervals, all assumptions are set back to
the original ones, thus satisfying the filter assumptions. Note
that the filter assumes the same initial assumption throughout
the scenario, which leads to violations of the assumptions in
the corresponding disturbance intervals.

The results of the proposed self-monitoring tracking mod-
ule for all three sensors are presented in Fig. 2. The re-
sults show that the SA module is able to monitor its as-
sumption and detect the corresponding violations. Especially
the measurement bias violations in all sensors are strong
disturbances that lead to multiple SA test violation reports
indicated by the low and decreasing SA scores. Note that
the bias violation is so significant that there are multiple
non-associated measurements during these time intervals,
resulting in missed detections. This is indicated by the low
detection probability SA scores. However, this has only a
small effect on the bias SA score itself because if there is a
missed detection, no evidence is generated for the bias SA.
In Fig. 3, the comparison results of a time-averaged variant
of the NIS, the overall SA tracking score from Section IV-
G, and the positional root mean squared error (RMSE) as a

GT-based evaluation measure are shown. It can also be seen
here that the measurement bias violations are significantly
visible in the time-average NIS. Moreover, the RMSE also
shows that the bias violations in all three sensors lead to
the biggest errors in the scenario. Due to the averaging
fusion in the overall SA, some declines in individual SA
scores are averaged out. Note that not all disturbances and
assumption violations lead to some performance degradation
in the RMSE metric. For this, a sensitivity analysis between
assumption violations and performance degradation in eval-
uation metrics is important in future works towards a self-
assessing performance degradation estimation.

B. Disturbances in Urban Environments

The next simulation scenario is motivated by disturbances
caused by adverse weather conditions and mirroring effects
in urban environments. The case of adverse weather in an
urban environment can lead to various disturbances in the
sensors typically used in automated driving systems. Namely,
for lidar sensors, these conditions can lead to an increased
noise of the detections, a decreased object detection rate,
and an increased clutter rate. Radar sensors, in contrast, are
mostly unaffected by these conditions. However, in some
cases, an increase in the number of radar clutter detections
can be caused by urban environments. Moreover, camera
sensors may be similarly affected to lidar sensors, except for
the increased clutter rate. In addition, reflective conditions in
an urban environment, e.g., large glass walls, usually tend to
increase the number of clutter detections by all three sensors
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Fig. 3. The results of the time-averaged NIS as a comparison measure, our obtained overall SA tracking score based on all sensors’ monitoring modules,
and the GT evaluation RMSE measure are shown. The disturbances of the scenario are summarized in Table I and highlighted by the red shadows.

TABLE II
OVERVIEW OF THE DISTURBANCES IN AN URBAN ENVIRONMENT SCENARIO WITH ADVERSE WEATHER CONDITIONS AND MIRRORING EFFECTS.

Sensors
Time steps 100− 200 300− 400

(adverse weather) (mirroring effects)
Sensor 1 - Lidar ↑ meas. noise & ↓ det. prob. & ↑ clutter rate ↑ clutter rate
Sensor 2 - Radar ↑ clutter rate ↑ clutter rate
Sensor 3 - Camera ↑ meas. noise & ↓ det. prob. ↑ clutter rate
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Fig. 4. The self-monitoring tracking module results, consisting of five SA tests and the combined SA scores for all three sensors, are shown. Table II
shows the corresponding disturbances of the urban environment scenario. Red shadows indicate these disturbances, which are monitored by the SA module.

due to the mirroring effect. This scenario is summarized in
Table II. First, from time step 100 − 200, the disturbances
of adverse weather are simulated, and then from time step
300 − 400, the disturbances of mirroring effects by many
reflective surfaces are simulated.

The results of the proposed self-monitoring tracking mod-
ule for all three sensors in the urban environment scenario
with multiple simultaneous disturbances are shown in Fig. 4.
Here, it can be seen that even with multiple simultaneous
disturbances, the SA module is able to correctly monitor
these violations in the corresponding aspects. In contrast,
the time-averaged NIS measure shown for comparison in
Fig. 5 gives only a single score with its confidence interval,
where the source of the disturbance causing the increased
NIS value is not identifiable. Moreover, the RMSE signifies
that the error is mostly increased in the adverse weather

disturbance interval, which also leads to a larger decrease
in the overall SA score. From this, it can be concluded that
the self-monitoring tracking module is capable of correctly
monitoring not only violations of assumptions in the corre-
sponding categories in a timely and consistent manner but
also multiple failures at the same time. Still, it is also able
to fuse the individual SA scores in an SL reasoning manner
to obtain combined SA scores for each sensor and an overall
SA score for the whole tracking algorithm.

VI. CONCLUSION

This paper proposed a hybrid approach for the develop-
ment of a self-monitoring tracking module. In fact, statistical
hypothesis tests are applied, and, in addition, the test outputs
are fed into an SL reasoning framework to obtain the SA
results. Following this approach, many more insights can
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Fig. 5. The results of the time-averaged NIS as a comparison measure, our obtained overall SA tracking score based on all sensors’ monitoring modules,
and the GT evaluation RMSE measure are shown. The disturbances of the urban environment scenario are summarized in Table II and highlighted by the
red shadows.

be obtained than from the classical comparison method of
the time-averaged NIS since the individual and the overall
results can be used for further decision-making on the state
of health of the perception system. In challenging simulation
experiments, our self-monitoring tracking module showed
good results in self-assessing the disturbances, which have
been chosen to be close to real-world effects in automated
vehicles. However, not all disturbances and assumption vio-
lations lead to the same performance degradation in the eval-
uation metrics. Hence, an important future research field is
to connect the obtained SA measures with the GT evaluation
metrics, which evaluate the actual performance degradation
of the filter estimates. Further future work will include real-
world testing on real-world data from automated vehicles as
well as the extension of the method towards MOT.
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[12] M. Stübler, S. Reuter, and K. Dietmayer, “Consistency of feature-based
random-set Monte-Carlo localization,” in 2017 European Conference
on Mobile Robots (ECMR), 2017, pp. 1–6.

[13] J. Dunı́k, O. Straka, and B. Noack, “Classification of uncertainty
sources for reliable Bayesian estimation,” in 2023 IEEE Symposium
Sensor Data Fusion and International Conference on Multisensor
Fusion and Integration (SDF-MFI), 2023, pp. 1–8.

[14] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, 2008.
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