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Self-Monitored Detection Probability Estimation for the Labeled
Multi-Bernoulli Filter

Alexander Scheible, Thomas Griebel, and Michael Buchholz

Abstract— Automated vehicles rely on their environment
model, usually generated by a tracking module using sensor data,
to make decisions. Therefore, estimating the accuracy of the
tracking module is vital for the safe and reliable operation of the
vehicle. This work makes a step towards this goal by providing
a detection probability estimation method with a self-monitored
quality assessment for the labeled multi-Bernoulli filter. We
demonstrate the significance of the proposed quality index by
comparing it with the actual estimation error calculated with
ground truth data. This shows that the developed index is a
meaningful value that can be computed online without ground
truth data.

I. INTRODUCTION

In the field of automated driving, the self-assessment
of functional components is not just crucial for ensuring
safe operation; it is also a gateway to unlocking advanced
capabilities. This could entail, for instance, an adaptive
framework where modules are chosen based on context
information or a dynamic setup adjusting to performance
demands [1]. The environmental model holds particular
significance as both planning and decision-making depend
on its accuracy. Moreover, ongoing self-monitoring might be
obligatory, as mandated by legislation in Germany [2].

The monitoring of the tracking module tries to estimate its
current performance optimally with respect to some ground-
truth tracking metrics. Naturally, the monitoring must occur in
real-time and online, i.e., without access to ground truth data.
Consequently, tracking metrics such as the optimal subpattern
assignment (OSPA) [3], OSPA2 [4], or generalized OSPA
(GOSPA) [5] metrics are inapplicable, as they are defined
with ground truth data.

Furthermore, Dunı́k et al. [6] proposed the reliability index.
This index is based on an ideal Bayesian filter that generates
a ground truth tracking result without any assumptions,
approximations, or modeling errors. Consequently, even if
computable, this index is probably not accessible in real-time.
The difference between the ideal filter’s result and that of
the evaluated filter shows the level of epistemic uncertainty.
This uncertainty comes from the evaluated filter’s inherent
lack of knowledge, such as unknown systematic effects or
approximations.
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Following some of their arguments, we suggest taking into
account the following aspects to develop a practical and real-
time self-monitoring system for the tracking module. Here,
the first two aspects are interrelated, with the latter building
upon the former, whereas the final two can be addressed
separately from the rest.

• Assessment of the tracking parameters: This assesses
whether the particular parameterization of the tracking
algorithm fits the data and includes, e.g., the process
and measurement noise parameters.

• Sensitivity of the tracking parameters: For each tracking
parameter, the sensitivity to some tracking metric is
evaluated. Coupled with the first point, this enables the
estimation of the effect of a parameter misconfiguration.

• Assessment of the filter design: Each filter operates
under certain assumptions. For example, the Kalman
filter assumes linear models and Gaussian-distributed
noise. This aspect assesses these assumptions and their
impact on performance.

• Assessment of the tracking scenario: Scenarios vary in
complexity; for instance, estimating multiple tracks in
close proximity is more challenging than tracking a
single one. Hence, the operational context of the filter
must be considered. While this aspect cannot be altered
by the filter at all, it is presumed to significantly affect
the filter’s overall performance and should, therefore, be
considered.

This paper contributes to the first aspect of assessment of the
tracking parameters. One important parameter is the detection
probability, i.e., the probability that an object gets detected by
a sensor. For this, we propose a novel detection probability
estimation method for the labeled multi-Bernoulli (LMB)
filter [7]. The method includes a self-monitoring that provides
a quality index (QI). The QI reflects the current accuracy of
the estimation, making it valuable when in future evaluating
a parameter misconfiguration. The proposed method can
correctly follow a jumping or drifting time-varying detection
probability. Because we see this work within the broader
framework of the proposed self-assessment aspects for the
tracking module, we do not feed the estimated detection
probability back into the filter.

Summarizing our contributions, we

• propose a novel detection probability estimation with
included self-monitoring that provides a QI, and

• demonstrate the close relationship between the QI and
estimation error, showing its significance as meaningful
online information.



II. RELATED WORK

The normalized innovation squared (NIS) [8] is the
traditional online consistency metric for the Kalman filter,
monitoring the consistency between process and measurement
noise and incoming measurements. In [9], Mahler put the
NIS into a broader scope and introduced the generalized
NIS (GNIS) and its adaptation for multi-object tracking,
the multi-target GNIS (MGNIS). These so-called divergence
detectors verify the consistency of the filter noise assumptions.
What unifies all three methods is their consideration of all
assumptions simultaneously. In our context, this poses a
significant drawback, as it prevents the differentiation of
parameter-specific effects on filter performance.

Another assessment approach for single object tracking
(SOT), including a component analysis of the filter assump-
tions, based on subjective logic (SL) is developed by Griebel
et al. [10]. Note that SL is an extension of probabilistic logic
that is based on subjective opinions [11]. The work was
extended in [12] for SOT in clutter with the nearest neighbor
association algorithm. For this, methods for the assessment
of the detection and clutter rate have been developed. Similar
to our method, the uncertainty value of SL expresses the
statistical uncertainty and indicates the estimation quality.
However, within their considered task and algorithm, i.e.,
tracking a single object in clutter with the nearest neighbor
association, the decision of whether an object was measured
or not is trivial and, therefore, the assessment of the detection
probability.

In this work, we propose a method in the spirit of [12] that
enables a detection probability estimation with self-monitoring
for multi-object tracking. The description of our method is
completely self-contained, so no knowledge of SL is required.

III. FOUNDATIONS

This section briefly summarizes the main fundamentals
of the LMB filter and our detection probability modeling
with conjugate priors. For further insights into the LMB filter,
we recommend [7], [13], and for additional information on
conjugate priors, we suggest [14].

A. Labeled Multi-Bernoulli Filter

The LMB filter, introduced by Reuter et al. [7], is a
multi-object tracking algorithm based on finite set statistics
(FISST) [15]. Acting as a real-time feasible approximation
of the Generalized Labeled Multi-Bernoulli (GLMB) filter, it
replaces the updated GLMB density with an LMB density
[7]. The filter comprises two main steps: Prediction and
update. Since the prediction step does not affect our detection
probability estimation, our focus centers on the update. During
this step, the predicted LMB density gets first transformed
into a GLMB density, which allows an analytical closed
update with the formulas derived by [13]. Subsequently, the
updated GLMB is approximated by an LMB density that
matches its first statistical moment [7].

In more detail: If the predicted LMB density is given by
the parameters {r(l)+ , p

(l)
+ }l∈L+ , the updated GLMB density

is given by [13]

π(X|Z) = ∆(X)
∑

(I,θ)∈F(L+)×Θ

w(I,θ)(Z) δI(L(X))
[
pθ(·|Z)

]X
.

(1)

Here, X ∈ F(X × L+) is the set of all tracks, where one
track is given by its kinematic part x ∈ X and its label
l ∈ L+. F(X) is the set of all finite subsets of X, Z ∈ F(Z)
is the multi-object measurement, Θ is the space of all valid
measurement-to-track associations θ, δ is the generalized
Kronecker delta with δY (X) = 1 if Y = X and δY (X) = 0
otherwise, and w(I,θ)(Z) is the weight of the hypothesis
(I, θ).

Following [13], the weight of a hypothesis can be inter-
preted as its probability, i.e., if we abbreviate H := (I, θ),
then P (H | Z) = wH(Z). Note that each hypothesis H
has a clear measurement-to-track association given by the
corresponding θ. For completeness, the equations for wH and
pθ are given [13]

w(I,θ)(Z) ∝ [r+]
I
[1− r+]

L+\I [
ηθZ

]I
(2a)

pθ(x, l|Z) = p+(x, l)ψZ(x, l, θ)

ηθZ(l)
(2b)

ηθZ(l) = ⟨p+(·, l), ψZ(·, l, θ)⟩ (2c)

ψZ(x, l, θ) =

{
pD(x,l)g(Zθ(l)|x,l)

κ(Zθ(l))
θ(l) > 0

1− pD(x, l) θ(l) = 0,
(2d)

where p+(·, l) is the predicated state of label l, r+ is the
predicted existence probability, pD is the detection probability,
g is the measurement model, ⟨·, ·⟩ denotes the scalar product
in L2 and κ is the clutter intensity, i.e., the clutter rate per
volume. The detection probability influences the filter through
Eq. (2d), which roughly weights the probability of receiving
an object measurement against that of receiving a clutter
measurement.

The LMB density that matches the first moment of Eq. (1)
is given by {r(l), p(l)}l∈L+ with [7]

r(l) =
∑

(I,θ)∈H
l∈I

w(I,θ)(Z), (3a)

p(l) =
1

r(l)

∑
(I,θ)∈H

l∈I

w(I,θ)(Z)pθ(x, l|Z), (3b)

where H := F(L+)×Θ is the set of all possible hypotheses.

B. Detection Model

Within the LMB filter, each object independently gets
detected by a sensor with probability pD ∈ [0, 1]. In the
following, such measurements are called object measurements
and are denoted by O ⊆ Z. The number of object measure-
ments is denoted by O = |O|. The detection probability pD
can theoretically depend on the state and the label of an object.
However, if, like in this work, the filter gets implemented with
Gaussian mixtures, the detection probability is often assumed
to be constant and independent of the label. If an object



gets detected, the measurement z follows the measurement
model h of the sensor, i.e., z = h(x, e), where e describes
the measurement noise. Often, it is assumed that the noise is
additive and Gaussian distributed with zero mean. So, in total,
a single object measurement follows a Bernoulli RFS, and
all object measurements together follow a multi-Bernoulli
RFS [15].

In addition to the object measurements, so-called clutter
measurements are modeled by an independent Poisson
process, i.e., if we denote the clutter measurements by
C ⊆ Z, then π(C) = e−⟨κ,1⟩κC and |C| ∼ Poi(⟨κ, 1⟩) [15].
The clutter measurements are iid. with probability density
function (pdf) κ/⟨κ, 1⟩. The object and clutter measurements
are mutually exclusive, meaning that the number of clutter and
object measurements are connected through |C|+O = |Z|.

We model our current knowledge about the detection
probability by a Beta distribution, i.e., pD ∼ β(p, q), where
β(p, q) denotes the Beta distribution characterized by the
parameters p > 0 and q > 0. Its pdf is given by [14]

fp,q(x) =

{
Γ(p+q)
Γ(p)Γ(q)x

p−1(1− x)q−1, x ∈ (0, 1),

0, otherwise.
(4)

Here, Γ(·) denotes the Gamma function. The mean µ and
variance σ2 of the distribution are given by

µ =
p

p+ q
, σ2 =

pq

(1 + p+ q)(p+ q)2
. (5)

In total, this yields the following model for a single object
measurement Zx belonging to an object with state x:

Zx ∼ Bernoulli (pD, h(x, e)) , (6a)
pD ∼ β(p, q). (6b)

Here, Bernoulli(p, f) denotes a Bernoulli RFS with probabil-
ity p and spatial distribution f . Since the Beta distribution
is conjugate to the Bernoulli distribution, the posterior of
Eq. (6b) after k ∈ N0 detections and l ∈ N0 misdetections is
also Beta distributed with [14]

pD|(k, l) ∼ β(p+ k, q + l). (7)

IV. DETECTION PROBABILITY ESTIMATION

We use the Beta distribution described in Section III-B
to express our knowledge about the detection probability.
The mean of the Beta distribution is the estimation of the
detection probability, whereas the variance is defined as the
QI for that estimation and expresses the uncertainty. This
means a small QI indicates a confident estimation, and a high
QI might indicate an imprecise estimation.

To update the estimation, we use the information from the
filter update step: A GLMB hypothesis describes one possible
association between the tracks and received measurements.
The number of detections in this hypothesis is the number of
all associated measurements. Using the weight of a hypothesis,
we compute the distribution of the number of detections, as
illustrated in Fig. 1. With the obtained distribution, we then
update the current estimation. In the following, the method is
formulated for the LMB filter. However, it is straightforward

A

B

1

Fig. 1: Illustration of the distribution of the number of detections. Here, two
tracks, indicated by the circles, are updated with one measurement, indicated
by the cross. The weights of the updated GLMB hypotheses, cf. Eq. (2), are
shown on the middle, with the corresponding distribution of the number of
detections on the right, cf. Eq. (8). A→ i denotes that track A is associated
with measurement i, where i = 0 expresses a misdetection.

to adapt it to other filters as long as they have an update step
that allows the computation of the distribution of the number
of detections, cf. Eq. (8), such as the GLMB filter.

In more detail: Let N(H) ≤ |Z| be the number of
associated measurements of a hypothesis H with |H| tracks
and Ok,t the random variable of detecting k out of t objects.
Then,

ok,t := P (Ok,t|Z) =
∑
H∈H

P (Ok,t|H)P (H|Z) (8a)

=
∑
H∈H

N(H)=k
|H|=t

wH(Z) (8b)

is the probability for detecting k objects out of t possible
ones. Using Eq. (8) and Eq. (7), the update of the predicted es-
timation pD,+ ∼ β(p+, q+) is a mixture of Beta distributions
given by

f(pD|Z) =
∑
k,t

f(pD,+|Ok,t)P (Ok,t|Z) (9a)

=
∑
k,t

ok,tfp++k,q++t−k(pD,+), (9b)

where fp,q is the pdf of the Beta distribution with parameters
p, q, cf. Eq. (4).

Note that the sum is actually finite since only a finite
number of ok,t are non-zero. Note also that this computation
does not introduce large overhead, as all necessary values are
computed by the LMB filter anyway. The method, as shown
above, is analytically closed. However, the number of mixture
components grows rapidly; thus, for practical applicability, a
merging strategy is introduced in the following.

We found that approximating the mixture Eq. (9) by a
single Beta distribution with the same mean and variance as
the mixture yields satisfying results for our use case. In detail,
let the mixture be given by components i ∈ {1, 2, . . . NC}
each with mean µi, variance σ2

i , and weight wi. Using the
linearity of expectation and the law of total variance, we



express the mean µ̄ and variance σ̄2 of the mixture by

µ̄ =

NC∑
i=1

wiµi, (10a)

σ̄2 =

NC∑
i=1

wi

[
σ2
i + (µi − µ̄)2

]
. (10b)

The Beta distribution with the same mean and variance, cf.
Eq. (5), is given by the parameters

p =
µ̄(µ̄− σ̄2 − µ̄2)

σ̄2
, q =

(µ̄− 1)(σ̄2 + µ̄2 − µ̄)

σ̄2
. (11)

Because of the association uncertainty expressed in the
distribution of O, the variance of the mixture typically will
not go to zero. However, it can still become so small that
changes and jumps in the detection probability can be difficult
to follow because of an over-confident predicted estimation
pD,+ in Eq. (9). Therefore, we apply two different discounting
steps:

• First, we apply a static discounting step in the prediction
by scaling the parameters p, q of the previous estimation
by a factor ςC ∈ (0, 1], i.e.,

p+ = ςp, q+ = ςq. (12)

This maintains the mean but increases the predicted
variance σ2

+, cf. Eq. (5). This improves the results,
especially in slowly and smoothly changing situations
because it prevents the estimation from becoming overly
confident.

• Second, we perform a dynamic discounting after the
update. Here, the discount parameter depends on the
difference between the predicted and updated estimated
detection probability, i.e., the mean of the estimated
Beta distribution. The idea is that this will increase
the variance for rapidly changing or jumping detection
probabilities. In more detail, the dynamic discount
parameter ςD ∈ (0, 1] is given by

ςD = max
{
ςmin, 1− α|pD,+ − pD|

}
, (13)

where ςmin > 0 prevents the parameter from getting
negative, α > 0 is a scaling parameter that regulates
how change results in discounting, and pD,+, pD is the
predicted respective updated estimation of the detection
probability.

V. HANDLING OF GROUPING

The gating and grouping step [7] stands as a pivotal
component for the practical implementation of the LMB filter.
It subdivides the update into n ∈ N independent sub-problems,
facilitating parallel processing. While this significantly en-
hances the filter efficiency, it complicates the computation of
the distribution of the number of detections. With grouping,
every group independently yields the distribution of its sub-
problem, as shown in Fig. 2. Then, the overall distribution is

A
B

1

G1

C

2

G2
3

Fig. 2: When the LMB filter uses grouping, the problem is split into
independent subproblems. Here, we have two groups, G1 and G2, where non-
gated measurement-to-track associations are indicated by a dashed line. First,
the distribution of each group is calculated as shown in Fig. 1 and Eq. (8).
Then, the overall distribution is calculated by considering all possibilities of
Eq. (14). Note that the figure does not show all possibilities.
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Fig. 3: The simulated tracking scenario with ten tracks. Black circles indicate
the birth location of the objects.

given by

ok,t =
∑

k1+k2+···+kn=k
t1+t2+···+tn=t

ki,ti∈N0, ∀i=1,...,n

o
(1)
k1,t1

o
(2)
k2,t2

· · · o(n)kn,tn
, (14)

where o(i) describes the distribution of group i according
to Eq. (8). To compute this efficiently, first, the individual
o(i) with non-zero weights are determined. Then, based on
the problem size, the sum can either be calculated exactly
or approximately by, e.g., a k-shortest path or a sampling-
based approach that determines the ok,t with relevant weight,
such as in [16]. Note that this step does introduce a small
computational overhead.

VI. EXPERIMENTS AND RESULTS

In this section, we perform simulations to test our proposed
method. The LMB filter is implemented with Gaussian
mixtures based on [7]. We use a simple point measurement
model, which measures the (x, y)-position together with a
nearly constant velocity state model and a dynamic, two-
step birth model. The tracking scenario, shown in Fig. 3, is
simulated with the software in the loop framework [17] and
every experiment is evaluated with 50 Monte-Carlo runs.

A. Detection Probability Profiles

We simulate the tracking scenario with different detection
probability profiles specified in Fig. 4. In scenario A, the
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Fig. 4: Three different scenarios with varying detection probability.

detection probability is constant but is initialized incorrectly.
Scenario B models a detection probability that jumps between
constant values, and scenario C shows a smoothly changing
detection probability.

In all scenarios, we use the Beta distribution with param-
eters p = 1.8 and q = 1.2 as prior. This means the prior
distribution has a mean of 0.6 and a variance of 0.06, cf.
Eq. (5). Note, that this value does not fit the values used to
generate the scenario, cf. Fig. 4. The static discount is set to
ςS = 0.99, and the parameters for the dynamic discounting
are ςmin = 0.3 and α = 4. The LMB filter assumes a
time-invariant detection probability of 0.6. All other filter
parameters match the parameters of the simulation.

B. Results

Figure 5a and Fig. 5b summarize the results for scenario A.
The left figure shows the current estimation of the detection
probability together with the low and high 10% quantile of
the estimated Beta distribution, indicating the uncertainty
of the estimation. As expected, the uncertainty drops in the
beginning with an increasing number of time steps. However,
note that the uncertainty does not decrease significantly
because of the association uncertainty inherent to the problem
and because of the proposed discount factors. It reaches its
minimum in the middle of the simulation when the greatest
number of tracks and, therefore, information to infer the
detection probability, is present. The spikes at time points
600, 700, and 800, also visible in the other scenarios, can be
explained with the GOSPA metric shown in Fig. 6. At these
time points, the GOSPA metric shows a high spike in the
false tracks, meaning the tracking algorithm estimated false
positive tracks. Naturally, no measurement can be assigned
for these false tracks, so the estimated detection probability
drops at these times.

In Fig. 5b, we assess our proposed QI. For this, we compare
the QI with the absolute error of the estimation. There is a
correlation between the two values, indicating the QI is, in
fact, a meaningful value. Note that the QI can be computed
online and does not require ground truth information, whereas
the estimation error is an offline value that does need ground
truth. However, a quantitative evaluation of the correlation
between the two values is outside this paper’s scope and will
be left to future work.

Figure 5c and Fig. 5d show the result for the scenario B.
It can be seen that at the jumping points, the QI increases,
indicating correctly an imprecise estimation.

Figure 5e shows the result for the scenario with the
continuously drifting detection probability. Again, according
to Fig. 5f, there is a connection between the estimation error
and the QI, especially visible at the already mentioned time
points with the false tracks.

To summarize, the proposed detection probability estima-
tion with included self-monitoring correctly estimates the
detection probability in all scenarios. It follows jumps and
drifts of the ground truth, and the proposed QI value is an
online value that indicates when the estimation is not reliable.

VII. CONCLUSION AND FUTURE WORK

This work contributed to the assessment of tracking pa-
rameters. We presented a self-monitored detection probability
estimation for the LMB filter. The developed method provides
an estimation of the detection probability together with the
QI, a value indicating the quality of the estimation.

The significance of the proposed QI was illustrated through
a comparison with the estimation error derived from ground
truth data. The analysis showed a correlation between the two
values, suggesting that the online calculable QI can identify
periods where the estimation might be less reliable.

The findings from this paper will inform future research
aimed at the sensitivity of tracking parameters. Ultimately,
we hope that the combined insight will enable an assessment
of the consequences of parameter misconfiguration.
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(a) Detection probability estimation of scenario A.
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(b) Estimation error of scenario A compared to the proposed QI.
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(c) Detection probability estimation of scenario B.
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(d) Estimation error of scenario B compared to the proposed QI.
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(e) Detection probability estimation of scenario C.
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(f) Estimation error of scenario C compared to the proposed QI.

Fig. 5: Results for the three scenarios A, B, and C from Fig. 1. The left column shows the current estimation in black together with the high and low 10%
quantile of the estimated Beta distribution. The thick yellow line shows the real value of the detection probability. On the right, we show the estimation
error together with the proposed QI. Note that the estimation error requires ground truth knowledge, whereas the QI does not.
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Fig. 6: Number of false tracks. The figure shows the number of false positive
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