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Abstract—Decision making in automated vehicles is based on
the environment model, which is typically computed by a tracking
module from information gathered by sensors. Thus, for safe and
robust operation of the vehicle, the assessment of the current
quality of the tracking module is crucial. This work makes a
step towards this goal by providing a clutter rate estimation
method with a self-monitored quality assessment for the labeled
multi-Bernoulli filter. The significance of the proposed quality
index is demonstrated by comparing it with the actual estimation
error calculated with ground truth data. The simulation results
show that the developed quality index is a meaningful value that
can be computed online without the need for ground truth data.
Moreover, it is competitive and closely related to the estimation
error.

I. INTRODUCTION

In the context of automated driving, the self-monitoring
of functional modules is not only a critical feature for safe
operation but will also make other advanced features possible.
This includes, e.g., an adaptive system where the modules
are selected based on context information or the dynamic
configuration based on performance requirements [1]. The
environmental model is especially important since planning
and decision-making depend on it. Furthermore, the continuous
monitoring of the intended functionality can be mandatory, e.g.,
by law in Germany [2].

For the tracking module, the self-assessment aims to provide
an estimation of the current tracking performance with regard
to some tracking evaluation metrics. This assessment must
happen online, meaning no ground truth information is available
for this task. Therefore, the usual tracking metrics, e.g.,
optimal subpattern assignment (OSPA) [3], OSPA2 [4], or
generalized OSPA (GOSPA) [5], are not applicable since they
all require ground truth information. In addition, Dunik et
al. [6] introduced an approach to estimating the tracking
reliability through the concept of the reliability index. The
proposed reliability index is defined with the concept of an
ideal Bayesian filter that provides a ground truth tracking
result with no assumptions, approximations, or modeling errors
made. Therefore, if it can be determined at all, this theoretical

Parts of this research have been conducted as part of the PoDIUM project
and other parts as part of the EVENTS project, which are both funded by the
European Union under grant agreement No 101069547 and No 101069614,
respectively. Views and opinions expressed are, however, those of the authors
only and do not necessarily reflect those of the European Union or European
Commission. Neither the European Union nor the granting authority can be
held responsible for them.

index is also not available online. The difference between the
ideal filter result and that of the assessed filter reflects the
amount of epistemic uncertainty. The assessed filter introduces
this uncertainty through a lack of knowledge, i.e., unknown
systematic effects or approximations.

Following their approach of the reliability index, we propose
to consider the following points in order to realize an online self-
assessment system for the tracking module that is applicable
in practice and available online. The first two points build on
each other, while the last two can be treated independently of
the others.

1) Assessment of the tracking parameters: This checks whether
the specific parametrization of the tracking algorithm fits
the data. This includes, e.g., the process and measurement
noise parameters.

2) Sensitivity of the tracking parameters: A parameter mis-
match worsens the tracking result. Here, the influence
of a parameter mismatch on some ground truth tracking
evaluation metric is determined. Together with the first
point, this makes it possible to estimate the impact of a
parameter misconfiguration.

3) Assessment of the filter design: Every filter is based on
some assumptions. For example, the Kalman filter is only
optimal under certain conditions, e.g., linear models and
Gaussian distributed noise parameters. This point evaluates
whether these assumptions fit the data and how they affect
performance.

4) Assessment of the tracking scenario: Not every scenario
is equally difficult, e.g., many tracks close to each other
are more difficult to estimate than a single track. This
means that the situation in which the filter operates must
be taken into account. Although this point is not included
in the reliability index of [6] and can not be influenced,
it is assumed to have a significant impact on the absolute
performance of the filter.

This paper contributes to the first point of the proposed
assessment system, the assessment of the tracking parameters.
One important parameter is the clutter rate which models the
number of measurements not originating from the actual objects.
For this, we propose a novel clutter rate estimation for the
labeled multi-Bernoulli (LMB) filter [7]. The method includes
a self-assessment that provides a quality index (QI). The QI
indicates the current quality of the estimation and is, therefore,



a helpful value when the tracking parameters and their influence
on the performance are assessed during the second proposed
point. Note that we do not perform the sensitivity analysis in
this work. The proposed method provides more information
than a clutter rate estimation without QI. For example, we will
show that the QI can be used to detect situations where the
number of clutter does not follow the distribution assumed by
the filter, which is not possible without it. The estimation can
correctly follow a jumping or drifting time-varying clutter rate.
Since we see this work in the larger context of the outlined
self-assessment aspects for the tracking module, we do not
feed the estimation back into the filter and make adjustments
but keep it independent of the tracking parameter.

Summarizing our contributions, we

• propose a novel clutter rate estimation with included self-
monitoring that provides a QI, and

• show that the QI is closely related to the estimation error
and is, thus, meaningful online information.

II. RELATED WORK

The normalized innovation squared (NIS) [8] is the classical
online consistency measure for the Kalman filter. It monitors
whether the process and measurement noise are consistent with
the incoming measurements. Related to this, there exists the
generalized NIS (GNIS) and its version for multi-object track-
ing, the multi-target GNIS (MGNIS) developed by Mahler [9].
These so-called divergence detectors are methods to test the
filter assumptions for consistency. What all three methods have
in common is that they consider all assumptions together and
do not allow the evaluation of a single parameter. This is a
major disadvantage in our context, as it is not possible to
differentiate the effects on filter performance per parameter.

A more unified assessment approach, including a component
analysis of the filter assumptions, is developed by Griebel et al.
in [10], [11]. They proposed a self-assessment method based on
subjective logic (SL) for the Kalman filter [10]. Note that SL
is an extension of probabilistic logic that is based on subjective
opinions [12]. This work was extended in [11] for single-object
tracking in clutter with the nearest neighbor association. For this
task, methods for the assessment of the detection and clutter rate
have been developed. Their clutter rate assessment considers
three confidence intervals, namely, 50% confidence around
the mean of the expected number of clutter and with 25%
below and above the first interval [11]. Then, each interval’s
theoretical expected number of clutter is compared against the
actual data to determine whether the rate fits. Similar to our
method, the uncertainty value of SL expresses the statistical
uncertainty and indicates the estimation quality. However, the
modeling with SL has two main disadvantages in this context.
First, it allows only a rough clutter rate estimation because of
the discretization. Second, the ordering information is ignored
by grouping the number of clutter into categorical intervals.
This is needed because SL opinions are mathematically based
on Dirichlet distributions which imply categorical distributed
data. This is not ideal for clutter estimation, since the number

of clutter measurements is naturally ordered. Modeling with
SL discards this order.

In this work, we enhance [11] in two main points. First, we
extend the method for multi-object tracking with the LMB filter.
Second, we overcome the limitations of SL while retaining its
explicit notation of uncertainty.

III. FOUNDATIONS

This section briefly summarizes the main fundamentals of
the LMB filter and clutter rate modeling with conjugate priors.
We refer to [7], [13] for more details about the LMB filter and
to [14] for more details about conjugate priors.

A. Labeled Multi-Bernoulli Filter

The LMB filter [7] is a multi-object tracking algorithm
based on finite set statistics (FISST) [15]. It is a real-time
capable approximation of the GLMB filter, where the updated
GLMB density is replaced by a LMB density [7]. The filter
has two steps: prediction and update. Because the prediction
step is not essential for the clutter rate estimation, we mainly
focus on the update step. For the update, the predicted LMB
density is converted to a GLMB density, which can be updated
analytically with the formulas given in [13]. Then, the updated
GLMB is approximated by an LMB density that matches its
first statistical moment [7].

In more detail: If the predicted LMB density is given by the
parameters {r(l)+ , p

(l)
+ }l∈L+ , then the updated GLMB density

is given by [13]

π(X|Z) = ∆(X)
∑

(I,θ)∈F(L+)×Θ

w(I,θ)(Z) δI(L(X))
[
pθ(·|Z)

]X
. (1)

Here, X ∈ F(X×L+) is the set of all tracks, where one track
is given by its kinematic part x ∈ X and its label l ∈ L+.
X and Z are the state and measurement space, F(A) is the
set of all finite subsets of a set A, Z ∈ F(Z) is the multi-
object measurement, Θ is the space of all valid measurement-
to-track associations θ, δ is the generalized Kronecker delta
with δY (X) = 1 if Y = X and δY (X) = 0 otherwise, and
w(I,θ)(Z) is the weight of the hypothesis (I, θ).

Following [13], we interpret the weight of a hypothesis
as its probability, i.e., if we abbreviate H := (I, θ), then
P (H | Z) = wH(Z). Note that each hypothesis H has a clear
measurement-to-track association given by the corresponding
θ. For completeness, the equations for wH and pθ are given
by [13]

w(I,θ)(Z) ∝ [r+]
I
[1− r+]

L+\I [
ηθZ

]I
(2a)

pθ(x, l|Z) = p+(x, l)ψZ(x, l, θ)

ηθZ(l)
(2b)

ηθZ(l) = ⟨p+(·, l), ψZ(·, l, θ)⟩ (2c)

ψZ(x, l, θ) =

{
pD(x,l)g(Zθ(l)|x,l)

κ(Zθ(l))
θ(l) > 0

1− pD(x, l) θ(l) = 0,
(2d)

where p+(·, l) is the predicated state density of label l, r+ is the
predicted existence probability, pD is the detection probability,



g is the measurement model, ⟨·, ·⟩ denotes the scalar product in
L2 and κ is the clutter intensity, i.e., the clutter rate per volume.
In Eq. (2a) the notation [f ]A, where f is a value that depends
on a ∈ A and A is a set, is defined as [f ]A :=

∏
a∈A f(a).

The LMB density that matches the first moment of Eq. (1)
is given by the parameters {r(l), p(l)}l∈L+

with [7]

r(l) =
∑

(I,θ)∈H
l∈I

w(I,θ)(Z), (3a)

p(l) =
1

r(l)

∑
(I,θ)∈H

l∈I

w(I,θ)(Z)pθ(x, l|Z), (3b)

where H := F(L+)×Θ is the set of all possible hypotheses.

B. Clutter Model

Within the LMB filter, the clutter measurements are assumed
to be independent of the object measurements and follow a
Poisson process, i.e., if we denote the clutter measurements
by C ⊆ Z and the number of clutter by C := |C|, then
π(C) = e−⟨κ,1⟩κC and C ∼ Poi(⟨κ, 1⟩) [15]. The clutter mea-
surements are independent and identically distributed according
to the probability density function (pdf) κ/⟨κ, 1⟩. Here, we
additionally assume a homogeneous Poisson process, where κ
is constant over the measurement space [15]. This means the
clutter measurements are completely specified by the clutter
rate λ := ⟨κ, 1⟩ ∈ (0,∞).

The clutter rate influences the filter through Eq. (2d),
which roughly weights the probability of receiving an object
measurement against that of receiving a clutter measurement.

We model our current knowledge about the clutter rate by a
Gamma distribution, i.e., λ ∼ Γ(α, β), where Γ(α, β) is the
Gamma distribution characterized by the shape α > 0 and rate
β > 0. Its pdf is given by [14]

fα,β(x) =

{
xα−1e−βxβα

Γ(α) x > 0

0 otherwise.
(4)

Here, Γ(·) denotes the Gamma function. The mean µ and
variance σ2 of the distribution are given by

µ =
α

β
, σ2 =

α

β2
. (5)

In total, this yields the following clutter model:

C ∼ Poi(λ), (6a)
λ ∼ Γ(α, β). (6b)

Since the Gamma distribution is conjugate to the Poisson
distribution, the posterior of Eq. (6b) given k ∈ N0 clutter
measurements is also Gamma distributed with [14]

[λ|C = k] ∼ Γ(α+ k, β + 1). (7)

A

B

1

Fig. 1: Illustration of the distribution of the number of clutter. Here, two
tracks, indicated by the circles, are updated with one measurement, indicated
by the cross. The weights of the updated GLMB hypotheses, cf. Eq. (2), are
shown on the middle, with the corresponding clutter distribution on the right,
cf. Eq. (8). The association of a track A to a measurement i is denoted A→i,
where measurement 0 expresses a misdetection.

IV. CLUTTER RATE ESTIMATION

We use the Poisson-Gamma model described in Section III-B
to express our knowledge about the clutter rate. The mean of
the Gamma distribution is the estimation of the clutter rate,
whereas the variance is defined as the QI for that estimation
and expresses the uncertainty. This means a small QI indicates
a confident estimation, and a high QI relates to an unconfident
estimation.

To update the clutter estimation, we use the information
from the filter update step: A GLMB hypothesis describes
one possible association between the tracks and received
measurements. The number of clutter in this hypothesis is
the number of all non-associated measurements. Using the
interpretation of the weight of a hypothesis as its probability
according to [13], we compute the distribution of the number of
clutter, as illustrated in Fig. 1. With the obtained distribution,
we then update the current clutter model. In the following,
the method is formulated for the LMB filter. However, it is
straightforward to adapt it to other trackers as long as they have
an update step that allows the computation of the distribution
of the number of clutter, cf. Eq. (8), such as the GLMB filter.

In more detail: Let N(H) ≤ |Z| be the number of non-
associated measurements of hypothesis H . Then,

ck := P (C = k|Z) =
∑
H∈H

P (C = k|H)P (H|Z) (8a)

=
∑
H∈H

N(H)=k

wH(Z) (8b)

is the probability for k clutter measurements.
Using Eq. (8) and Eq. (7), the update of the predicted

clutter estimation λ+ ∼ Γ(α+, β+) is a mixture of Gamma
distributions given by

f(λ|Z) =
∑
k∈N0

f(λ|C = k)P (C = k|Z) (9a)

=
∑
k∈N0

ckfα++k,β++1(λ), (9b)

where fα,β is the pdf of the Gamma distribution with parame-
ters α, β, cf. Eq. (4).



Note that the sum is actually finite since only a finite number
of weights have non-zero values. Moreover, it is worth noting
that the computation does not introduce large overhead, as all
necessary values are computed by the LMB filter anyway. In
theory, the method is analytically closed, as shown above, but
the number of mixture components grows rapidly. Therefore,
a merging strategy is introduced in the following.

We found that approximating the mixture Eq. (9) by a
single Gamma distribution with the same mean and variance
as the mixture yields satisfying results for our use case. In
detail, let the mixture be given by individual components
i ∈ {1, 2, . . . NC} with mean µi, variance σ2

i , and weight wi.
Then, using the linearity of the expectation and the law of total
variance, the mean µ̄ and variance σ̄2 of the mixture is given
by

µ̄ =

NC∑
i=1

wiµi, (10a)

σ̄2 =

NC∑
i=1

wi

[
σ2
i + (µi − µ̄)2

]
. (10b)

The Gamma distribution with the same mean and variance, cf.
Eq. (5), is given by the parameters

α =
µ̄2

σ̄2
, β =

µ̄

σ̄2
. (11)

Because of the association uncertainty expressed in the distri-
bution of C, the variance of the mixture typically will not go
to zero. However, it can still become so small that changes and
jumps in the clutter rate can be difficult to follow, because of
an over-confident predicted estimation λ+ in Eq. (9). Therefore,
we apply two additional steps:

• First, we also include the predicted estimation into the
mixture with a fixed weight of wprior ∈ R+, such that Eq. (9)
gets replaced by

f(λ|Z) = w∗
prior fα+,β+ +

∑
k∈N0

c∗k fα++k,β++1(λ), (12)

where the superscript ∗ denotes that values are normalized,
i.e., w∗

prior +
∑

k∈N0
c∗k = 1. This mainly improves the results

for rapidly changing or jumping clutter rates. During these
periods, there is a discrepancy between the predicted and
updated estimation, and this discrepancy will increase the
variance of the mixture Eq. (12).

• Second, we apply a discounting step in the prediction by
scaling the parameters α, β of the previous estimation by a
factor ς ∈ (0, 1], i.e.,

α+ = ςα, β+ = ςβ. (13)

This maintains the mean but increases the predicted variance
σ2
+ = 1

ς σ
2, cf. Eq. (5). Especially for slowly and smoothly

changing clutter rates, where the first step does not help much,
this improves the results because it prevents the estimation
from becoming overly confident.

A
B

1

G1

C

2

G2
3

Fig. 2: Illustration of the distribution of the number of clutter when applying
grouping in the update step. Here, we have two groups, G1 and G2, where a
non-gated measurement-to-track association is indicated by a dotted line. First,
the distribution of each group is calculated as shown in Fig. 1 and Eq. (8).
Then, the overall distribution is calculated by considering all possibilities.

V. HANDLING OF GROUPING

The key element for the practical applicability of the LMB
filter is the gating and grouping step [7]. This breaks the
update step into n ∈ N independent sub-problems that can
be processed in parallel. This is highly advantageous for the
filtering, but complicates the computation of the distribution
of the number of clutter.

With grouping, every group independently yields the clutter
distribution of its sub-problem, as shown in Fig. 2. Then, the
overall distribution is given by

ck =
∑

k1+k2+···+kn=k
ki∈N0, ∀i=1,...,n

c
(1)
k1
c
(2)
k2

· · · c(n)kn
, (14)

where c(i) describes the clutter distribution of group i according
to Eq. (8). To compute this efficiently, first, the individual c(i)

with non-zero weights are determined. Then, based on the
problem size, the sum can either be calculated exactly or
approximately by, e.g., a k-shortest path or a sampling-based
approach that determines the ck with relevant weight, such
as in [16]. Note that this step does introduce computational
overhead.

VI. EXPERIMENTS AND RESULTS

In this section, we perform experiments based on simulated
data to test our proposed method. The LMB filter is imple-
mented with Gaussian mixtures based on [7]. We use a simple
point measurement model, which measures the (x, y)-position
together with a nearly constant velocity state model and a
static birth model. The tracking scenario shown in Fig. 3 is
simulated with the software in the loop framework [17] and
evaluated with 50 Monte-Carlo runs.
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Fig. 3: The simulated tracking scenario with ten tracks. Black circles indicate
the start position and the static birth locations.
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Fig. 4: Three different scenarios with varying clutter rates and profiles.

A. Clutter Profiles

We simulate the tracking scenario with different clutter
profiles, where the number of clutter is Poisson distributed
with the rates specified in Fig. 4.

In scenario A, the clutter rate is constant but is initialized
incorrectly. Scenario B models a clutter rate that jumps between
constant values, and scenario C shows a smoothly changing
clutter rate. Additionally, we evaluate scenario D, not visualized,
where the number of clutter measurements does not follow a
Poisson distribution but is uniformly distributed between 0 and
50, i.e., P (C = k) = 1

51 , k ∈ {0, 1, . . . , 50}. In all scenarios,
we use the Gamma distribution with mean µ = 1 and variance
σ2 = 10 as prior for the clutter rate estimation. The prior
weight is set to wprior = 1 and the discounting parameter to
ς = 0.95. The LMB filter assumes a time-invariant clutter rate
of 25.

B. Results

Figure 5a and Fig. 5b summarize the results for scenario A.
The left figure shows the current estimation of the clutter rate
together with the low and high 1% quantile of the estimated
Gamma distribution, indicating the uncertainty of the estimation.
As expected, the uncertainty drops in the beginning with
an increasing number of time steps. However, note that the

uncertainty does not decrease significantly because of the
association uncertainty inherent to the problem and because
of the proposed discount factor. In Fig. 5b, we assess our
proposed QI defined by the variance of the estimated Gamma
distribution. For this, we compare the QI with the absolute
error of the clutter rate estimation. As can be seen, there is a
high correlation between the two values, indicating the QI is,
in fact, a meaningful value. Note that the QI can be computed
online and does not require ground truth information, whereas
the estimation error is an offline value that does need ground
truth. However, a quantitative evaluation of the QI and its
relation to the estimation error, is outside this paper’s scope
and will be left to future work.

Figure 5c shows the estimation result for the scenario
B. Unlike the first scenario, the uncertainty does not drop
monotonously but rises at the jumping points of the clutter
rate. This is consistent with the error and QI in Fig. 5d. After
the jumping times, the uncertainty and error of the estimation
drop again. Therefore, also in scenario B, the QI is a strong
indicator of the quality of the estimation.

Figure 5e shows the result for the scenario with the
continuously drifting clutter rate. Again, according to Fig. 5f,
there is a connection between the estimation error and the QI.
The larger uncertainty and absolute error after the drift can
be explained by the higher ground truth value, so the relative
error roughly stays the same.

Figure 6 shows the results for Scenario D, where the number
of clutter is uniformly distributed. This is different from the
other scenarios because here, we estimate a Poisson rate for
data that is not Poisson distributed. Therefore, it is not possible
to quantify the error of the estimation. Instead, we only show
the estimated clutter rate and our proposed QI. The estimated
rate is roughly the same as the mean of the uniform distribution.
This is not surprising, as the mean of a Poisson distribution is
given by its rate. However, the QI of the estimation is large.
Therefore, the QI correctly indicates that the quality of the
estimation is low, especially compared to scenario A, where
the number of clutter also follows a time-invariant distribution.

To summarize, the proposed clutter rate estimation with
included self-monitoring correctly estimates the clutter rate in
all scenarios. It follows jumps and drifts of the clutter rate,
and the proposed QI value is an online value that indicates
when the estimation is not reliable.

VII. CONCLUSION AND FUTURE WORK

This work contributed to the assessment of tracking param-
eters. We presented a self-monitored clutter rate estimation for
the LMB filter. The developed method provides an estimation
of the clutter rate together with the QI, a value indicating
the quality of the estimation. The significance of the QI
was demonstrated by comparing it to the estimation error
computed with ground truth data. This evaluation showed a
high correlation between the two values, meaning that the
online calculable QI can indicate phases where the estimation
is not as reliable as before. Additionally, the QI can be used to
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(a) Clutter rate estimation of scenario A.
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(b) Estimation error of scenario A compared to the proposed QI.
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(c) Clutter rate estimation of scenario B.
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(d) Estimation error of scenario B compared to the proposed QI.
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(e) Clutter rate estimation of scenario C.
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(f) Estimation error of scenario C compared to the proposed QI.

Fig. 5: Results for the three clutter scenarios A, B, and C from Fig. 1. The left column shows the current estimation in black together with the high and low
1% quantile of the estimated Gamma distribution. The real value of the clutter rate is shown by the thick yellow line. On the right, we show the estimation
error together with the proposed QI. Note that the estimation error requires ground truth knowledge, whereas the QI does not.
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Fig. 6: Clutter rate estimation and proposed QI of scenario D, where the
number of clutter is uniformly distributed.

detect situations where the number of clutter does not follow
the expected distribution.

The results of this work will be used in future work that
provides the sensitivity of the tracking parameters. Put together,
this will allow an estimation of the impact of a parameter
misconfiguration. In addition, methods for the quantitative
evaluation of self-assessment need to be developed.

REFERENCES

[1] M. Henning, J. Müller, F. Gies, M. Buchholz, and K. Dietmayer,
“Situation-Aware Environment Perception Using a Multi-Layer Attention
Map,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 481–
491, Jan. 2023.

[2] Bundesministerium der Justiz sowie das Bundesamts für Justiz. (2022)
Verordnung zur Genehmigung und zum Betrieb von Kraftfahrzeugen mit



autonomer Fahrfunktion in festgelegten Betriebsbereichen (Autonome-
Fahrzeuge-Genehmigungs-und Betriebs-Verordnung - AFGBV). [Online].
Available: https://www.gesetze-im-internet.de/afgbv/AFGBV.pdf

[3] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A Consistent Metric for
Performance Evaluation of Multi-Object Filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

[4] M. Beard, B. T. Vo, and B.-N. Vo, “OSPA (2) : Using the OSPA metric
to evaluate multi-target tracking performance,” in 2017 International
Conference on Control, Automation and Information Sciences (ICCAIS),
Chiang Mai, Thailand, Oct. 2017, pp. 86–91.

[5] A. S. Rahmathullah, A. F. Garcia-Fernandez, and L. Svensson, “General-
ized optimal sub-pattern assignment metric,” in 2017 20th International
Conference on Information Fusion (Fusion), Xi’an, China, Jul. 2017, pp.
1–8.

[6] J. Dunı́k, O. Straka, and B. Noack, “Classification of Uncertainty Sources
for Reliable Bayesian Estimation,” in 2023 IEEE Symposium Sensor
Data Fusion and International Conference on Multisensor Fusion and
Integration (SDF-MFI), Bonn, Germany, Nov. 2023, pp. 1–8.

[7] S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, “The labeled multi-
bernoulli filter,” IEEE Transactions on Signal Processing, vol. 62, no. 12,
pp. 3246–3260.

[8] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association.
Academic Press, 1988.

[9] R. Mahler, “Divergence detectors for multitarget tracking algorithms,”
I. Kadar, Ed., Baltimore, Maryland, USA, May 2013, p. 87450F.

[10] T. Griebel, J. Müller, M. Buchholz, and K. Dietmayer, “Kalman Filter
Meets Subjective Logic: A Self-Assessing Kalman Filter Using Subjective
Logic,” in 2020 IEEE 23rd International Conference on Information
Fusion (FUSION), Jul. 2020, pp. 1–8.

[11] T. Griebel, J. Müller, P. Geisler, C. Hermann, M. Herrmann, M. Buchholz,
and K. Dietmayer, “Self-assessment for single-object tracking in clutter
using subjective logic,” in 2022 25th International Conference on
Information Fusion (FUSION), 2022, pp. 1–8.

[12] A. Jøsang, Subjective Logic. Cham: Springer International Publishing,
2016.

[13] B.-T. Vo and B.-N. Vo, “Labeled Random Finite Sets and Multi-Object
Conjugate Priors,” IEEE Transactions on Signal Processing, vol. 61,
no. 13, pp. 3460–3475, Jul. 2013, number: 13.

[14] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin, “Bayesian Data Analysis Third edition (with errors fixed
as of 15 February 2021).”

[15] R. P. S. Mahler, Statistical multisource-multitarget information fusion.
Boston: Artech House, 2007.

[16] M. Herrmann, C. Hermann, and M. Buchholz, “Distributed Implemen-
tation of the Centralized Generalized Labeled Multi-Bernoulli Filter,”
IEEE Transactions on Signal Processing, vol. 69, pp. 5159–5174, 2021.

[17] J. Strohbeck, J. Müller, A. Holzbock, and M. Buchholz, “Deepsil: A
software-in-the-loop framework for evaluating motion planning schemes
using multiple trajectory prediction networks,” in International Confer-
ence on Intelligent Robots and Systems, 2021, pp. 7075–7081.

https://www.gesetze-im-internet.de/afgbv/AFGBV.pdf

	Introduction
	Related Work
	Foundations
	Labeled Multi-Bernoulli Filter
	Clutter Model

	Clutter Rate Estimation
	Handling of Grouping
	Experiments and Results
	Clutter Profiles
	Results

	Conclusion and Future Work
	References

