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UNION: Unsupervised 3D Object Detection
using Object Appearance-based Pseudo-Classes

Unsupervised 3D object detection

❖ Goal: Discover mobile objects (e.g. vehicles, pedestrians, cyclists)

❖ Data: Unlabeled LiDAR point clouds and camera images (i.e. raw data)

❖ Task: Generate pseudo-labels and train standard 3D object detector 
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UNION pipeline

1) Generate 3D object proposals by clustering non-ground LiDAR points.

Contributions

We propose UNION, which sets the new SOTA on nuScenes [1].

1) First to use camera, LiDAR, and temporal information jointly.

2) Reduce training complexity and time by avoiding iterative training protocols.

3) Extend 3D object discovery to multi-class 3D object detection.

Comparison with existing methods

Qualitative results

Scene part of the nuScenes [1] training dataset.

Conclusion

❖ We propose UNION for unsupervised 3D object detection.

❖ We are the first to use LiDAR, camera, and temporal information jointly.

❖ We set the new SOTA for unsupervised 3D object discovery.

Quantitative results

We increase AP by 178 % for unsupervised 3D object discovery on nuScenes [1].
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In contrast to existing work, we use multi-modal data to generate pseudo-bounding

boxes and labels for training detectors and we do not need self-training.

a) LiDAR 3D object discovery with LiDAR-based self-training [3][4]

b) LiDAR 3D object discovery with multi-modal self-training [7]

c) UNION: multi-modal multi-class 3D object discovery (ours)
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2) Estimate motion for each object proposal (static or dynamic).

𝑣1: Static 𝑣2: Dynamic 𝑣3: Dynamic 𝑣4: Static

3) Create appearance embedding for each object proposal using camera images.
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4) Cluster object proposals using their appearance embeddings.
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5) Identify mobile clusters by selecting appearance clusters.

6) Train standard 3D object detector using pseudo-bounding boxes.
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We test UNION with different image encoders.
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