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EVENTS Summary

Objectives

• Development of robust and reliable perception 
of objects, and especially VRUs, under complex 
urban traffic and bad weather or low visibility 
conditions

• Improved perception performance while using 
cost-efficient sensor suites
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Introduction

• Relative pose measurements obtained/derived from onboard vehicle sensors 

are often quite important for localisation and mapping tasks. 

• The integration/fusion of such measurements can be used to obtained a 

vehicles pose in some “odometry” coordinate frame. 

• Covariance estimates/measurements can be used to help improve accuracy 

via measurement weighting during estimation/optimisation.

• Relative pose measurement errors can vary dramatically depending on 

scene/time (variation that is not Gaussian like).  

• To this end, estimating covariance of relative pose measurements (with 

heteroscedastic errors) can potentially help improve accuracy of estimated 

vehicle pose. 
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Background – Existing Approaches  

• In this work we build upon the methods proposed in the following:

• K. Lui et al, “Deep Inference for Covariance Estimation: Learning Gaussian Noise Models for State 

Estimation”, 2018

• A.D. Maio et al, “Simultaneously Learning Corrections and Error Models for Geometry-based Visual 

Odometry methods”, 2020.
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Background – Covariance Estimation (Localisation) 
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• The relative pose measurements ( ෠𝑇𝑖+1
𝑖 ∈ 𝑅4×4 ) are obtained from a visual 

odometry algorithm

• The error between ground truth relative pose (𝑇𝑖+1
𝑖 ) and estimated relative pose is 

given by:

ei = log( ෠𝑇𝑖+1
𝑖 𝑇𝑖

𝑖+1)

• To this end, the covariance estimation models seek to determine the covariance 𝑅𝑖 
of the following error distribution:

       ei~𝒩 0, 𝑅𝑖

Viewpoint at 

time index 𝑖

Viewpoint at 

time index 𝑖+1
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Limitations and Proposed Approach 

• Our rational is that a diagonal estimation of covariance reflects the available 

information, and furthermore, and ultimately the diagonal covariance for a 

single measurement is the square of the error. 

• To this end, our objective is to measure the squared error of the estimated 

relative pose and ground truth relative pose (error specified in previous slide).

• Prior work estimate covariance using a pair of mono or stereo images 

obtained from two different viewpoints. 

• Prior approaches consume as input images obtained from two different 

viewpoints, therefore they are not able to estimate squared error for an 

arbitrary relative pose measurement. 

• Our proposed approach seeks to include the  relative pose measurement as 

an additional input in order to capture error variation for a general relative 

pose measurement. 
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Proposed Approach 

• The input consists of images acquired from two different viewpoints along with the 

measured relative pose, while the output is the estimated covariance.

• The model utilises the measured relative pose via an image warping operation, 

thereby enabling the covariance estimate to vary according to measured relative 

pose.
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Training Details 

• For the depth estimation network, we propose to utilise the pre-trained 

monocular depth network (monodepth2) and more specifically the 1024x320 

version.

• As this is unscaled depth we use LiDAR measurements to compute a scale 

factor. Specifically using the ratio mean radial distance derived from LiDAR 

measurements and mean depth of unscaled depth estimates.

• The hyperparameters for covariance estimation network training were set as 

follows: batch size: 84, optimiser: Adam, and learning rate: 1e-04. 

• Stoppage criterion: We stopped training according to that is, once we 

observed diverging train and evaluation losses.
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Experimental Description

• We train and evaluate on the KITTI dataset. More specifically we use 

sequences 04-09 for training and sequence 10 for evaluation. 

• Ground truth measurements were assumed to be the RTK-GPS 

measurement, 

• In our work we considered relative pose measurements from the following 

“system”:

• System 1: Sparse visual odometry 

• System 2: RTK-GPS

• Prior approaches would not be able to compute a covariance that considered 

the measured relative pose. 

• We compute a variation of median absolute error between the ground truth 

squared error against the estimated squared error. 
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Results – Inference Examples

Translation - x

Translation - y

Rotation - yaw

Ground Truth – Red line

Inference – Blue Line

[7] A.D. Maio et al, “Simultaneously Learning Corrections and Error Models for Geometry-based Visual Odometry methods”, 2020.
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Results
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Conclusion

• In this work we have proposed a covariance estimation method for relative 

pose measurements obtained from an arbitrary system

• We achieve this by utilising the measured relative pose along with the images 

acquired between the two viewpoints to compute a covariance

• We demonstrate the ability of our model to estimate covariance for relative 

pose measurements obtained from two different systems

• Finally, in future work, we aim to investigate viewpoint synthesis via NeRFs as 

replacement to image warping, along with relative pose measurement 

generation to augment existing real-world datasets
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