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Adaptive Kalman Filtering Based on Subjective Logic Self-Assessment

Thomas Griebel1 , Johannes Müller2 , Michael Buchholz1 , and Klaus Dietmayer1

Abstract— Monitoring and self-assessment of tracking algo-
rithms are essential in modern automated driving systems.
However, the further use of this self-assessment information is
another growing and not thoroughly studied area of research.
One option is to adapt the parameters configured in the tracking
algorithm online to obtain better and more robust tracking
results directly. The paper proposes a novel overall concept
and framework for adaptive Kalman filtering using subjective
logic. Based on a self-assessment method, we present multiple
variants of adaptive strategies to adapt the noise assumptions
online for Kalman filtering. This paper focuses mainly on
adaptation procedures for multi-sensor Kalman filters. The
proposed method is evaluated in various experiments and
compared with state-of-the-art adaptive Kalman filters.

I. INTRODUCTION

In automated driving systems, involved modules are ex-
pected to react appropriately to changes in the environment.
External factors range from changeable weather conditions
to unexpected occurrences in urban traffic or even willful
manipulation from outside. One important module in envi-
ronmental perception is tracking, i.e., temporal filtering of
objects measured in the vehicle’s surroundings. In order to
react to external changes, the tracking module needs some
kind of self-assessment (SA) that monitors its performance
online. Using information from this SA in tracking, filter
parameters can be automatically tuned by an appropriate
adaptation method, and the tracking results can be improved.

The Kalman filter (KF) [1] is the most well-known and
used tracking algorithm. Since Kalman filtering was devel-
oped, adaptive Kalman filtering has been a research topic of
interest. Mehra [2] already presented an overview of different
approaches to adaptive filtering in 1972. He proposed a cate-
gorization of approaches into four groups: Bayesian estima-
tion, maximum likelihood estimation, correlation methods,
and covariance matching. Since then, research in this area has
continued, such as [3]–[6] and surveys on noise covariance
estimations, such as [7], [8]. Despite being a long-studied
problem, proper adaptation mechanisms for adaptive KFs
are still subject to current research, particularly since the
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Fig. 1. The conceptual overview of our proposed adaptation approach
applies an adaptation of the Kalman filter’s noise parameters that makes
use of a subjective logic-based self-assessment of the Kalman filter.

noise matrices are assumed to be known but usually are
actually unknown [8]. In [8], the authors propose a novel
optimization-based estimation scheme for the noise matrices,
provide mathematical conditions for the identifiability of
noise covariances, and convergence proofs. However, they
do not account for adaptations based on an SA. In [9], a
reinforcement learning approach is used to determine the
noise parameters of a system, the unknown statistical charac-
teristics of measurement noise. However, this requires offline
training. Furthermore, in [10], an auto-tuning mechanism
has recently been proposed to adapt the noise mechanisms.
However, the tuning works based on the computation-heavy
optimization of a hand-crafted cost function.

Adaptation is motivated by various possible issues in
conventional Kalman filtering. For example, the filter usually
assumes the knowledge of the process and the measurement
noise. Since a priori knowledge of the time-varying noise
covariance matrices is usually unavailable, the KF is not
always impeccable and may even lead to filtering diver-
gence [2]. Another possible issue, which is addressed in [11],
is the so-called overshooting. This describes the procedure
when a vehicle makes a turn to another direction, but the
process model still keeps the position estimation along with
the previous direction.

This paper presents an overall framework for adaptive
Kalman filtering using SA information; see Fig. 1. We
build on the SA approaches in [12]–[14] and develop the
adaptation of the filter noise parameters on top of it. For this,
subjective logic (SL) is used as an extension of probabilistic
logic for reasoning under uncertainty [15].

Summarizing our work in this paper, we propose:

• a novel overall concept and framework of adaptive
Kalman filtering based on SL,

• an adaptation strategy with multiple variants of calculat-
ing adaptation factors and estimating noise parameters,
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• an extensive evaluation of various challenging experi-
mental scenarios of our method and comparison to state-
of-the-art adaptive KFs.

II. FUNDAMENTALS

This section summarizes the KF equations and the con-
sistency examination [16], which are the basics of adaptive
Kalman filtering. Then, the mathematical foundation of SL
is briefly summarized [15].

A. Kalman Filter

In Kalman filtering, the central assumptions are that all
models are linear and all probability densities are Gaussian.
Furthermore, the process noise vk ∈ Rn and measurement
noise wk ∈ Rm are uncorrelated and zero-mean Gaussian
distributed. Under these conditions, it is proven that the
KF [1], as a Bayes filter realization, is an optimal state
estimator [17] for the state xk ∈ Rn using the measurements
zk ∈ Rm. The recursive equations of the KF are given by

x̂k+1|k = Fkx̂k, (1a)

Pk+1|k = FkPkF
T
k +Qk, (1b)

ẑk+1|k = Hk+1x̂k+1|k, (1c)

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1, (1d)

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 (1e)

x̂k+1 = x̂k+1|k +Kk+1γk+1, (1f)

Pk+1 = Pk+1|k +Kk+1Sk+1K
T
k+1, (1g)

where Fk ∈ Rn×n is the process matrix, Hk+1 ∈ Rm×n the
measurement matrix, and x̂k+1|k ∈ Rn and ẑk+1|k ∈ Rm

are the state and measurement prediction. Also, k denotes
the time step index for the underlying constant sample time.
Furthermore, Pk+1|k ∈ Rn×n is the covariance matrix of
the predicted state, Qk = E

[
vkv

T
k

]
∈ Rn×n the covariance

matrix of the process noise, and Rk+1 = E
[
wk+1w

T
k+1

]
∈

Rm×m the covariance matrix of the measurement noise.
Using the innovation covariance matrix Sk+1 ∈ Rm×m and
the Kalman gain Kk+1 ∈ Rn×m, the estimated covariance
matrix Pk+1 ∈ Rn×n is obtained in the update step.
Moreover, in the update step, the estimated state x̂k+1 is
computed via Kalman gain and residual

γk+1 := zk+1 − ẑk+1|k. (2)

In practice, however, the Gaussian assumption only holds
approximately, and Q and R are not known exactly Hence,
the optimality, consistency, and unbiasedness are no longer
given. To test for the latter two properties, the normalized
estimation error squared (NEES)

εxk
= x̃T

kP
−1
k x̃k (3)

can be applied using the state residual x̃k := xk − x̂k|k,
which, however, requires ground truth (GT) data. If all
assumptions of the KF are met, the NEES is χ2 distributed
with n degrees of freedom. The NEES value is expected to be
inside a particular confidence interval of the χ2 distribution
to examine consistency.

B. Subjective Logic

The key component of SL is the so-called opinions [15].
With these, SL can explicitly model the statistical uncer-
tainty, comparable to the Dempster-Shafer theory [18], [19].
However, SL provides a comprehensive and flexible fusion
framework with several operators to fuse and merge opinions,
like the cumulative belief fusion (CBF) and the averaging
belief fusion (ABF) [20], [21], depending on the fusion task.
This comprehensive fusion framework is a major benefit of
SL. For more details about the fusion operator and when to
use which, see [15].

Information about belief, uncertainty, and base rate of
a discrete random variable X is represented in SL by a
multinomial opinion ωX .

Definition 1 (Multinomial Opinion). Consider a random
variable X in the finite domain X with cardinality W =
|X| ≥ 2. A multinomial opinion is then defined as ωX =
(bX , uX ,aX) with

bX(x) : X 7→ [0, 1], 1 = uX +
∑
x∈X

bX(x) , (4a)

aX(x) : X 7→ [0, 1], 1 =
∑
x∈X

aX(x) . (4b)

The belief mass distribution bX over X models the belief
in each event, the uncertainty mass uX ∈ [0, 1] forms the
lack of evidence, and the base rate distribution aX over X
represents the prior probability for each event.

The projected probability can be used to map a multino-
mial opinion to a classical probability distribution. This is
done by

PX(x) = bX(x) + aX(x)uX , ∀x ∈ X. (5)

In the classical probability space, the projected probability
equals the expected outcome of the opinion.

To compare two opinions about the same variable X , their
distance can be measured by the degree of conflict (DC) [15].

Definition 2 (Degree of Conflict). Consider two multinomial
opinions ωA

X and ωB
X of source A and B over X ∈ X. The

DC ∈ [0, 1] between two opinions ωA
X , ωB

X is computed by

DC
(
ωA
X , ωB

X

)
= PD

(
ωA
X , ωB

X

)
· CC

(
ωA
X , ωB

X

)
, (6)

using the projected distance PD
(
ωA
X , ωB

X

)
=

1
2

∑
x∈X |PA

X (x) − PB
X (x)| ∈ [0, 1] and the conjunctive

certainty CC
(
ωA
X , ωB

X

)
=

(
1− uA

X

) (
1− uB

X

)
∈ [0, 1].

A small DC signifies that the opinions are similar, while
a large DC signifies that they are different.

III. ADAPTATION STRATEGY FOR KALMAN FILTERING
USING SUBJECTIVE LOGIC

The general adaptation strategy consists of four major
steps: The SA module, the generation of multiple parameter
hypotheses with corresponding additional SA measures, a
situation analysis based on the SA measures, and a focused
adaptation of the corresponding noise parameters. This sec-
tion details these four steps.



A. Self-Assessment Measures

First, the SA for Kalman filtering, as presented in [12],
[14], is applied to calculate the basic single-sensor qual-
ity measures with corresponding explicit uncertainties. This
means we obtain SA scores in each time step for every sensor
s ∈ {1, . . . , V }. These consist of the quality measure, the
uncertainty, and the threshold, i.e.,(

δ(s), u
(s)
X , η(s)

)
, s = 1, . . . , V (7)

based on the SL opinions ω(s)
X for each sensor s. Performing

the SA procedure from [12] for all V sensors, the tuple of
all single-sensor SA measures is obtained in vector notation
(δ,u,η). The quality measures δ(s) are calculated using the
DC operator, the obtained SA opinion ω

(s)
X , and its reference

opinion ω
(s)
Xref

, modeling the initial KF assumptions, such that

δ(s) = DC
(
ω
(s)
X , ω

(s)
Xref

)
, s = 1, . . . , V. (8)

The corresponding explicit uncertainty of the quality mea-
sure follows directly from ω

(s)
X and is given by u(s) =

u
(s)
X . In addition, the corresponding threshold η(s) is also

calculated using ω
(s)
X and a chosen confidence level α ∈ [0, 1]

using the threshold calculation proposed in [13].
In addition, we can also calculate the DC between SA

opinions of different sensors s1, s2 ∈ {1, . . . , V }. Thus, we
obtain additional comparison measures

δ(s1,s2) = DC
(
ω
(s1)
X , ω

(s2)
X

)
∀s1, s2 = 1, . . . , V (9)

between each two sensors with s1 ̸= s2. Then, the overall SA
matrix ∆ =

(
δ(s1,s2)

)
∈ [0, 1]V×V is obtained for a certain

time step based on all sensors. Due to the commutative
property of the DC operator, the matrix is symmetric. For
more information on the SA algorithm, please refer to [12].

B. Hypotheses Generation

We use multiple hypotheses to gain more information for
the situation analysis to generate further quality measures
and to ensure a focused adaptation procedure. Following the
same process for obtaining the SA measures in the overall SA
matrix ∆, we can compare the assumptions of the KF noise
parameters with different hypotheses. These hypotheses can
be, for example, various noise parameters, e.g., with smaller
and higher values. The hypotheses generation approach can
be implemented by using related reference opinions ω

(s)
Xref,θ

for each additional hypotheses θ ∈ {1, . . . ,H}. This yields
to an SA hypotheses vector δθ ∈ [0, 1]V with

δθ =


δ
(1)
θ
...

δ
(V )
θ

 =


DC

(
ω
(1)
X , ω

(1)
Xref,θ

)
...

DC
(
ω
(V )
X , ω

(V )
Xref,θ

)
 , θ = 1, . . . ,H.

(10)

For example, we can generate two hypotheses about the
assumed noise parameter. First, the assumed noise parameter
has a smaller value. Second, the assumed noise parameter has
a higher value.

C. Situation Analysis

Using all the SA information we have obtained so far,
we perform a general situation analysis of the components
contributing to the filter algorithm’s performance. Our pro-
posed situation analysis is based on majority voting, which
is most common in the area of security (honest majority
assumption, see e.g. [22]). Applied to our adaptive KF, this
means that most of our system’s relevant components (the
sensors/measurements and the process models) keep working
correctly in case some become unreliable and thus require
adaptations. We consider two main cases in our adaptation
strategy: Measurement noise adaptation of selected sensors
and process noise adaptation.

1) Measurement Noise Adaptation: This case covers the
situation where at least one sensor SA measure reports
a violation, while the majority of sensors still meet the
measurement and process model assumptions and provide
data coherent with each other. This case is formulated by

0 <

V∑
s=1

1{δ(s)>η(s)} ≤
V

2
(11)

with the indicator function 1, which is 1 if δ(s) > η(s)

and 0 otherwise. The corresponding measurement covariance
matrices, which represent the noise assumption for the sensor
behavior, will then be adapted. To do this, we find the indices
of the SA measures that are greater than their thresholds, i.e.,

s⋆ ∈ S⋆ : δ(s
⋆) > η(s

⋆). (12)

We can either decrease or increase their measurement noise
for the selected sensors S⋆. This choice can be made using
the SA measures δθ based on our generated hypotheses θ =
1, . . . ,H in (10), applying one of the methods presented in
the following Sections IV-A, IV-B, and IV-C. Or we directly
estimate the noise parameter as proposed in Section IV-D.

2) Process Noise Adaptation: In case our SA observes
that more than half of the sensors deviate from the filter’s
expectation but are consistent among themselves, we con-
clude that the process model noise assumptions might be
wrong. This case is identified by

V∑
s1=1

V∑
s2=s1+1

1{δ(s1,s2)>min {η(s1),η(s2)}}

< V/2 <

V∑
s=1

1{δ(s)>η(s)}. (13)

As in (12), we find the sensors S⋆ reporting a violation and
modify the noise of the process model with an appropriate
adaptation factor based on their SA measures. This is shown
in the following sections.

The output of the situation analysis module is the analyzed
situation C ∈ C, where C is the space of all possible situa-
tions. The obtained situation C is then used in the subsequent
noise parameter adaptation. Thus, in the following sections,
we focus on the choice and the calculation of an adaptation
factor or the noise parameter estimation itself.



Algorithm 1 General proposed adaptation strategy.
Input: Noise covariance matrices of the Kalman filter for

the process model Q and for the measurement models
R(s) of the sensors s = 1, . . . , V

Output: Adjusted noise covariance matrices Q̃ and R̃(s) of
the sensors s = 1, . . . , V

1: procedure ADAPTATION (Q,R(1), . . . ,R(V ))
2: (δ,u,η), ∆← SA procedure from [12], [14] for all

V sensors
3: (δ1, . . . , δH) ← SA measures of H further

generated hypotheses θ
4: C ← Situation analysis using (δ,u,η), ∆, and

(δ1, . . . , δH)
5: Q̃, R̃(1), . . . , R̃(V ) ← Noise parameter adaptation

procedure from either Section IV-A, IV-B, IV-C
or IV-D based on all obtained information C,
(δ,u,η), ∆, and Q,R(1), . . . ,R(V )

6: return Q̃, R̃(1), . . . , R̃(V )

7: end procedure

D. Noise Parameter Adaptation
Finally, we adapt or auto-tune the measurement and

process noise. For this, we propose four different noise
parameter adaptation approaches described in Section IV.
The proposed adaptation procedure is summarized in Algo-
rithm 1.

IV. NOISE PARAMETER ADAPTATION APPROACHES

Based on different basic assumptions and thus aiming at
solutions for different situations, we propose four variants
of the noise parameter adaptation step. The first approach
uses a constant adaptation factor exploiting expert knowledge
about the whole system. In particular, when the consequences
of violating the assumptions are known, a specific choice
of adaptation factor can be made. The second adaptation
approach is based on SL’s trust revision (TR) concept [23].
It is a conservatively designed method for situations where
caution is more important than dynamics, like situations
where only outliers and no jumps are expected. Furthermore,
the method based on the TR and uncertainty differential
(UD) [15] concepts is designed for situations with high
dynamics, e.g., for frequently jumping parameters. With the
additional use of the UD concept, the more surprising a
significant disturbance is, the faster the response can be to the
desired extent. Last but not least, the proposed hybrid method
with classical parameter estimation using the SL-based SA
method combines the aspects of high dynamics and high
precision. Therefore, the hybrid method is advantageous in
most situations but also computationally more complex than
the others.

A. Constant Adaptation Factor
The constant adaptation factor strategy is particularly

useful to incorporate expert knowledge like estimates of how

system changes affect the noise parameters. For example,
for a one-dimensional measurement noise parameter w ∼
N

(
0, σ2

)
, the constant factor is a scalar β > 0 and yields the

adaptation of the noise parameter σ̃ = β σ. More generally,
the adaptation can be expressed as

Q̃ = BQ Q, (14a)

R̃(s) = BR(s) R(s), (14b)

using the KF process and measurement noise covariance
matrices introduced in Section II-A. Here, BQ ∈ Rn×n

>0 with
BQ =

(
bQij

)
and BR(s) ∈ Rm×m

>0 with BR(s) =
(
bR

(s)

ij

)
contain expert knowledge about possible system changes.
The types of matrices BQ and BR(s) depend strongly on
the noise covariance matrices Q and R(s). For example,
if Q and R(s) are diagonal matrices, then BQ and BR(s)

should also be diagonal. This would mean that each diagonal
component for i = 1, . . . n and j = 1, . . . ,m of the noise
covariance matrices can be adjusted by the constant factors
bQii > 0 and bR

(s)

jj > 0, respectively. Here, bQii , b
R(s)

jj ∈ (0, 1)
means a decrease in the noise covariance matrix component
and bQii , b

R(s)

jj > 1 an increase.
However, in a more general setting, this mechanism is of-

ten not flexible enough. Therefore, further adaptation mech-
anisms using specific assessment measures, their explicit
uncertainty, and certain concepts from SL are proposed.

B. Adaptation Factor Based on Trust Revision

The original motivation for the concept of TR [15] is that
when multiple sources have conflicting opinions, at least one
of the sources is not reliable [23]. Thus, a revision factor
(RF) for the corresponding source is computed depending
on the DC values of the other sources to reduce the trust in
the source. By applying TR in the adaptation strategy, an RF
can be calculated to selectively adjust the noise parameters.
Using s⋆ ∈ S⋆ from (12), the RF is computed similarly to
[23] via the maximum conflict (MC), the average conflict
(AC), and the revision weight (RW):

MC
(
ω
(S⋆)
X

)
= max

s⋆∈S⋆
δ(s

⋆), (15a)

AC
(
ω
(S⋆)
X

)
=

1

|S⋆|
∑
s⋆∈S⋆

δ(s
⋆), (15b)

RW
(
ω
(s⋆)
X

)
=


MC

(
ω

(S⋆)
X

)
d̃

MC
(
ω

(S⋆)
X

)
−AC

(
ω

(S⋆)
X

) , d̃ > 0

0 , else
(15c)

with d̃ := δ(s
⋆) −AC

(
ω
(S⋆)
X

)
. This yields the RF

RF
(
ω
(s⋆)
X

)
=

(
1− RW

(
ω
(s⋆)
X

))
(16)

to decrease the noise parameter, while the reciprocal of (16)
is used to increase the noise parameter. The decision to
increase or decrease is determined by the result of the
situation analysis C. The presented procedure for calculating
the RF must be performed for each noise parameter compo-
nent that can be mapped onto the measurement space and



should be adaptable so that all the corresponding RFs can
be gathered in an adaptation factor matrix. Consequently,
this results in the mathematical formulation of the noise
parameter adaptation with respect to the KF process and the
measurement noise parameters, namely

Q̃ = RFTR
Q Q, (17a)

R̃(s) = RFTR
R(s) R

(s), (17b)

where the matrices RFTR
Q ∈ Rn×n

>0 and RFTR
R(s) ∈ Rm×m

>0

denote that each noise component can be adapted by an
adaptation factor calculated based on the TR concept.

As mentioned, this conservative strategy is particularly
useful if the focus is on the avoidance of false positives.
However, if dynamics are more important, the explicit uncer-
tainty measure u of the SA module can be used additionally
to calculate adaptation factors.

C. Adaptation Factor Based on Trust Revision and Uncer-
tainty Differential

In SL, it can be discussed whether the obtained explicit
uncertainty is sufficiently taken into account. By extending
the RF from (16) with the concept of UD introduced in [15],
more weight can be given to the explicit uncertainty, i.e.,

RF
(
ω
(s⋆)
X

)
=

(
1− RW

(
ω
(s⋆)
X

))
·
(
1−UD

(
ω
(s⋆)
X

))
,

(18)

where the UD of the selected sensor opinion is defined as

UD
(
ω
(s⋆)
X

)
=

u
(s⋆)
X∑

s∈S⋆\{s⋆}
u
(s)
X

. (19)

Again, (18) is the formula for reducing while taking its
reciprocal increases the noise parameters. This decision is
again based on the result C of the situation analysis.

As before, the presented procedure for calculating the RF
in (18) must be performed for each noise parameter com-
ponent. This leads to the replacement of RFTR

Q and RFTR
R(s)

in (17) by RFTR−UD
Q ∈ Rn×n

>0 and RFTR−UD
R(s) ∈ Rm×m

>0 . The
index of the RF matrix denotes that each noise component
is adapted by an adaptation factor calculated based on the
TR and UD concepts.

D. Classical Noise Parameter Estimation Based on Subjec-
tive Logic Self-Assessment

In contrast to the previously presented strategies for
calculating the adaptation factor in closed-form using SL
theory, we now combine the SL-based SA with classical
noise parameter estimation. The core idea of this approach
is to use the already computed dynamic time intervals of
consistency of the SA. For details on the dynamic time
intervals of consistency, see [12]. Then, we are able to
precisely estimate the noise parameters based on these time
intervals of consistency. When there has not been a change in
the GT parameters for a long time, we are able to use a long-
term time window for precise estimation, with many samples
over that related time interval. In contrast, we can react

quickly and use only the samples of the current short-term
consistency window, where the change is already included in
the noise parameter estimation, in case of a sudden change
in the GT parameters.

We use the noise parameter estimates proposed in [8]
for classical noise parameter estimation. For estimating the
actual measurement noise covariance matrix R̃, we use the
relation [8]

R̃k = (Inz −HkKk) S̃k. (20)

Here, S̃k is the estimated actual innovation covariance,
which can be calculated over a time interval with N ∈ N
samples [24], [25] such that

S̃k =
1

N

k∑
j=k−N

γjγ
T
j . (21)

Estimating Rk by R̃k in (20) can be reasoned by utilizing
the post-fit residual µk = zk −Hkx̂k|k and the innovation
sequence γk = zk −Hkx̂k|k−1 from (2). For the detailed
derivation, see [8].

Furthermore, the actual process noise covariance matrix
can be estimated using [8]

Q̃k =Pk+1|k+1 +KkS̃kK
T
k − FkPk|kF

T
k . (22)

For both estimates in (20) and (22), note that the estimated
actual innovation covariance matrix S̃k in (21) is needed.

In our method, the noise covariance estimates are not
computed based on a fixed sliding window of interval length
N ∈ N as in most of the literature such as [24], [25], but on
the dynamically obtained window of consistency n⋆ ∈ NV+1

resulting from the short-term and long-term memory fusions.
This is obtained in the SA procedure by focusing on whether
there have been any parameter changes, i.e.,

n⋆(ωX) =

{
nlt(ωX) + nst(ωX) , consistent
nst(ωX) , else.

(23)

Then, we can specifically adjust the respective sensor or
process model, each of which has certain determined dy-
namic consistency time windows n⋆

(
ω
(s)
X

)
and process

model n⋆
(
ω
(Q)
X

)
. This is mainly obtained by using our

proposed situation analysis in Section III-C. This yields the
consistency time window vector

n⋆ (ωX) =
[
n⋆

(
ω
(1)
X

)
, . . . , n⋆

(
ω
(V )
X

)
, n⋆

(
ω
(Q)
X

)]T
.

(24)

V. EXPERIMENTS

To evaluate our proposed SL-based adapters, we construct
challenging simulation scenarios. First, we evaluate all our
adapter variants on a scenario with a jump in the GT
measurement noise parameters. Second, we also consider
state-of-the-art adaptive KFs as references and compare these
with our most promising adaptation method. The scenario
that is hereby considered contains various disturbances in
the GT measurement noise of the disturbed sensor. Third,
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Fig. 2. Measurement noise parameters of a three-sensor simulation
scenario with a factor 3 jump in the measurement noise of sensor 1 at
time step 300. The SL-based adaptation approaches aim to correctly adapt
the GT measurement noise. The red shadow indicates the disturbance.

process noise disturbances are considered, which shows that
our proposed adapter is also able to identify and deal with
these kinds of fault events.

In all scenarios, we consider a multi-sensor single-object
simulation setup where a single object is tracked using three
sensors, which each measure the position in two dimensions
(x, y) ∈ R2. Initially, all sensors are assumed equal, i.e.,
wk ∼ N(0,R) with constant variance σw > 0 for all sensors.
In addition, a white noise acceleration model is assumed
with initial time-invariant process noise vk ∼ N(0,Q) with
constant variance σv > 0. This initial setup satisfies the KF’s
assumptions, so no initial adaptation is needed. All results
are the averaged values of 100 Monte Carlo runs.

A. Comparison of Subjective Logic-Based Adapters

First, the four variants of the proposed SL-based adapters
are evaluated on a basic simulation scenario with one dis-
turbed sensor. The disturbance manifests as a jump in the
GT measurement noise by a factor of 3 at simulation time
step 300. The GT measurement noise for sensor 1, as well as
the adapted measurement noises performed by the adaptation
method with the constant adaptation factors β = 2 and
β = 3, the method based on TR, the approach based on
TR and UD, and the combined method (abbreviated with
comb.) are shown in Fig. 2. Unsurprisingly, for the other two
sensors as well as for the process noise, all methods correctly
estimated the noise parameters with the same performance
and are hence omitted. All SL-based adaptation approaches
react in the measurement noise of sensor 1 after a certain
time interval of about 20 time steps, which is the time
period the methods need to decide and adjust the correct
noise parameter. The constant adaptation factor β = 2
overshoots the targeted GT measurement noise of 3 since
a correct adaptation is impossible for this case, while the
perfectly chosen factor β = 3 yields an optimal adaptation
to the desired level. The slow increase in the noise parameter
estimation of the TR method is very conservative. On the
other hand, the TR-UD adjustment is more dynamic but
slightly overshoots the GT. The combined method using the
SL-based SA and classical noise parameter estimation shows
good results in noise adaptation, almost as accurate as the
perfectly chosen constant factor of 3.
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Fig. 3. Results of the SL-based adaptation approaches in a linear
simulation scenario with 3 sensors and one disturbance in the measurement
noise of sensor 1. The adaptation methods aim to reduce the positional
RMSE and keep the time-averaged NEES in its confidence interval. The
red shadow indicates the perturbation time interval.

The GT-based evaluation measures for the comparison
scenario of the SL-based adaptive KFs are shown in Fig. 3.
Here, the same discussion can be made as before for the
adaptation of the noise parameters between the different SL-
based approaches. It can be seen that all adapters improve
the results in terms of RMSE and NEES. In the RMSE
and NEES plots, the difference between the methods with
constant adaptation factor β = 3, the TR-UD, and the
combined approach is small. In fact, the plots superimpose
so that only the last plotted combined method is visible.
It is worth noting that for the NEES, all of the proposed
adaptation methods eventually come back inside the confi-
dence interval, so consistency is again ensured despite the
noise parameter perturbation. For a more detailed analysis,
the average positional RMSE has been evaluated before the
jump (time steps 0−300) and after it (time steps 300−600).
In the first time interval, all adapters and the standard KF
obtain 0.696m, which is the optimal result. After that, the
standard KF, the adapter with β = 2, with β = 3, the TR
adapter, the TR-UD adapter, and the combined method obtain
an RMSE of 1.277m, 0.876m, 0.863m, 0.914m, 0.869m,
and 0.864m, respectively. Hence, all adapters reduce the
RMSE of the standard KF, while the difference between
the optimally chosen constant adaptation factor of β = 3
with the best performance and the combined method is only
one hundredth. Hence, since the combined approach is more
generally applicable, the combined method is chosen as the
SL-based adaptation method for further comparison.

B. Disturbance in Measurement Noise

In the next step, we compare our method to the covari-
ance adjustment (CA) adapter [3], the robust innovation-
based (RIAE) adapter [4], and fuzzy aided (FL) adapter [5],
which are state-of-the-art adaptive KFs. Since the reference
methods are not able to adjust measurement and process
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Fig. 4. Measurement noise parameters of the disturbance scenario in the
measurement noise of sensor 1. The adaptation approaches aim to correctly
adapt the GT measurement noise. The red shadows indicate the disturbances.

noise simultaneously, we limit the comparison to adjusting
the measurement noise. For this, we consider a three-sensor
simulation scenario, in which a jump of factor 4 takes place
in sensor 1, then several measurement outliers of factor 5
occur every 30 time steps for all sensors at intervals of 10
time steps between the sensors, and finally a drift to the level
of 3 times the original noise level increases the measurement
noise. Fig. 4 visualizes the scenario. The measurement noise
of sensor 3 is not plotted here because it shows results that
are basically identical to sensor 2. In general, all adapters
adjust the measurement noise of the sensor 1. However, the
CA and RIAE adapters do not reach the jump and drift
disturbance level. The CA adapter performs well during the
outlier disturbances. The FL and our proposed SL adapters
reach the disturbance level of the jump and the drift. Here,
the FL adapter is even slightly faster than the SL adapter.
During the outlier disturbance, the SL adapter does not react
at all. This is intended here, because the adapter is designed
to not react to single outliers but to continuous statically
significant changes in the noise parameters. For sensor 2 and
sensor 3, the comparison adapters adjust the noise parameters
even during the jump and drift disturbance of sensor 1, but
nothing changes in the current sensor. In contrast, the SL
adapter correctly does not adjust the parameters. The same
aspects can be seen in the RMSE results of the adapters
compared to the KF with constant noise parameters in Fig. 5.
The NEES results are not plotted here because they show
similar results as the RMSE plot. The averaged values of
the RMSE results over corresponding time intervals are
summarized in Table I. Of all the adapters, the one with
the best performance is highlighted in bold, and the one with
the second-best performance is underlined. This indicates the
strength of the different adapters. Overall, our proposed SL-
based adapter outperforms the comparison adapters in most
of the time intervals.

C. Disturbance in Process Noise
Since the other adaptive KFs cannot adjust both mea-

surement and process noise, the proposed SL-based adapter
is only compared with the standard KF for the evaluation
of process noise disturbances. Fig. 6 shows the GT error
evaluation measures for a scenario in which the process noise
σvvel is stepped from 0.5m s−2 to 2.0m s−2 at time step
300. For this scenario, the adapter needs a short delay of
30 time steps to decide on the adaptation. The RMSE value
can be significantly reduced using the SL adapter. Before the
jump, both our method and the KF have a positional RMSE
of 0.701m, which increases due to the jump to 1.169m
for the KF and 0.869m for our method. In total, over all
time steps, the KF has an RMSE of 0.935m, while our
method only has an RMSE of 0.785m. In the NEES plot,
the SL adapter can significantly improve the consistency
compared to the standard KF. However, even the SL method
has also difficulty ensuring that the NEES value returns to
its confidence interval. This also shows that a process noise
disturbance is a challenging and sensitive task.

VI. CONCLUSION

In this work, we proposed an overall adaptation framework
for Kalman filtering based on the SL theory. As a funda-
mental part, we use our developed SL-based SA approach to
make a situation analysis to focus on adapting the noise pa-
rameters in a multi-sensor scenario. Moreover, we presented
four different noise parameter adaptation approaches. We
evaluated our adaptation procedures in different simulation
scenarios and compared our approach to state-of-the-art
adaptive KFs. The evaluations show some superior aspects
of our proposed adaptation as well as its performance and
flexibility in the application areas.

In future work, we want to extend our framework to
combine multiple-model adaptive estimation with a focus
on process noise and our SL adaptation approach focusing
on measurement noise. Furthermore, we want to extend our
framework to nonlinear filtering and multi-object tracking.
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